2 releases
0.1.1 | May 7, 2024 |
---|---|
0.1.0 | Apr 22, 2024 |
#748 in Database interfaces
54KB
1K
SLoC
Vectune: fast Vamana indexing
Vectune is a lightweight VectorDB with Incremental Indexing, based on FreshVamana. This project is implemented with the support of KinicDAO and powers the backend of KinicVectorDB for vector indexing.
Getting Start
By specifying progress-bar in features, you can check the progress of indexing.
[dependencies]
vectune = {version = "0.1.0", features = ["progress-bar"]}
To perform calculations of Euclidean distances quickly using SIMD, it is necessary to specify nightly
in example. If the rust-analyzer
in VSCode gives an error for #![feature(portable_simd)]
, please set up your .vscode/settings.json
.
{
"rust-analyzer.server.extraEnv": {
"RUSTUP_TOOLCHAIN": "nightly"
},
}
Example
Setup and Run
To test with the SIFT1M dataset, please execute the following command. SIFT1M is a dataset of 1 million data points, each with 128 dimensions.
curl ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz -o examples/test_data/sift.tar.gz
tar -xzvf examples/test_data/sift.tar.gz -C examples/test_data
cargo +nightly run --release --features progress-bar --example sift1m
How it works
Indexing is performed on the data using a Builder, and searches and insertions are conducted on the graph.
use vectune::{Builder, GraphInterface, PointInterface};
let points = Vec::new();
for vec in base_vectors {
points.push(Point(vec.to_vec()));
}
let (nodes, centroid) = Builder::default()
.progress(ProgressBar::new(1000))
.build(points);
let mut graph = Graph::new(nodes, centroid);
let k = 50;
let (top_k_results, _visited) = vectune::search(&mut graph, &Point(query.to_vec()), k);
PointInterface Trait
You will need to define the dimensions and data type of the vectors used, as well as the method for calculating distance.
Please implement the following four methods:
distance(&self, other: &Self) -> f32
fn dim() -> u32
fn add(&self, other: &Self) -> Self
fn div(&self, divisor: &usize) -> Self
distance()
can be optimized using SIMD. Please refer to ./examples/src/bin/sift1m.rs
.
The following example provides a simple implementation.
use vectune::PointInterface;
#[derive(Serialize, Deserialize, Clone, Debug)]
struct Point(Vec<f32>);
impl Point {
fn to_f32_vec(&self) -> Vec<f32> {
self.0.iter().copied().collect()
}
fn from_f32_vec(a: Vec<f32>) -> Self {
Point(a.into_iter().collect())
}
}
impl PointInterface for Point {
fn distance(&self, other: &Self) -> f32 {
self.0
.iter()
.zip(other.0.iter())
.map(|(a, b)| {
let c = a - b;
c * c
})
.sum::<f32>()
.sqrt()
}
fn dim() -> u32 {
384
}
fn add(&self, other: &Self) -> Self {
Point::from_f32_vec(
self.to_f32_vec()
.into_iter()
.zip(other.to_f32_vec().into_iter())
.map(|(x, y)| x + y)
.collect(),
)
}
fn div(&self, divisor: &usize) -> Self {
Point::from_f32_vec(
self.to_f32_vec()
.into_iter()
.map(|v| v / *divisor as f32)
.collect(),
)
}
}
GraphInterface Trait
To accommodate the entire graph on storage solutions other than SSDs or other memory types, you need to implement the GraphInterface
.
Please implement the following eleven methods:
fn alloc(&mut self, point: P) -> usize
fn free(&mut self, id: &usize)
fn cemetery(&self) -> Vec<usize>
fn clear_cemetery(&mut self)
fn backlink(&self, id: &usize) -> Vec<usize>
fn get(&mut self, id: &usize) -> (P, Vec<usize>)
fn size_l(&self) -> usize
fn size_r(&self) -> usize
fn size_a(&self) -> f32
fn start_id(&self) -> usize
fn overwirte_out_edges(&mut self, id: &usize, edges: Vec<usize>)
self.get()
is defined with &mut self
because it handles caching from SSDs and other storage devices.
In vectune::search()
, nodes returned by self.cemetery()
are marked as tombstones and are excluded from the search results. Additionally, they are permanently deleted in vectune::delete()
.
You need to manage backlinks when adding or deleting nodes. This is utilized in vectune::delete()
.
The following example provides a simple on-memory implementation.
use vectune::GraphInterface;
use itertools::Itertools;
struct Graph<P>
where
P: VPoint,
{
nodes: Vec<(P, Vec<u32>)>,
backlinks: Vec<Vec<u32>>,
cemetery: Vec<u32>,
centroid: u32,
}
impl<P> VGraph<P> for Graph<P>
where
P: VPoint,
{
fn alloc(&mut self, point: P) -> u32 {
self.nodes.push((point, vec![]));
self.backlinks.push(vec![]);
(self.nodes.len() - 1) as u32
}
fn free(&mut self, _id: &u32) {
// todo!()
}
fn cemetery(&self) -> Vec<u32> {
self.cemetery.clone()
}
fn clear_cemetery(&mut self) {
self.cemetery = Vec::new();
}
fn backlink(&self, id: &u32) -> Vec<u32> {
self.backlinks[*id as usize].clone()
}
fn get(&mut self, id: &u32) -> (P, Vec<u32>) {
let node = &self.nodes[*id as usize];
node.clone()
}
fn size_l(&self) -> usize {
125
}
fn size_r(&self) -> usize {
70
}
fn size_a(&self) -> f32 {
2.0
}
fn start_id(&self) -> u32 {
self.centroid
}
fn overwirte_out_edges(&mut self, id: &u32, edges: Vec<u32>) {
for out_i in &self.nodes[*id as usize].1 {
let backlinks = &mut self.backlink(out_i);
backlinks.retain(|out_i| out_i != id)
}
for out_i in &edges {
let backlinks = &mut self.backlink(out_i);
backlinks.push(*id);
backlinks.sort();
backlinks.dedup();
}
self.nodes[*id as usize].1 = edges;
}
}
Indexing
a
is the threshold for RobustPrune; increasing it results in more long-distance edges and fewer nearby edges.r
represents the number of edges; increasing it adds complexity to the graph but reduces the number of isolated nodes.l
is the size of the retention list for greedy-search; increasing it allows for the construction of more accurate graphs, but the computational cost grows exponentially.seed
is used for initializing random graphs; it allows for the fixation of the random graph, which can be useful for debugging.
let (nodes, centroid) = Builder::default()
.set_a(2.0)
.set_r(70)
.set_l(125)
.set_seed(11677721592066047712)
.progress(ProgressBar::new(1000))
.build(points);
Searching
k
represents the number of top-k results. It is necessary that k <= l
.
vectune::search(&mut graph, &point, k);
Inserting
vectune::insert(&mut graph, point);
Deleting
Completely remove the nodes returned by graph.cemetery()
from the graph.
vectune::delete(&mut graph);
Dependencies
~3–11MB
~127K SLoC