52 stable releases (4 major)

new 4.2.0 Nov 23, 2024
4.1.0 Sep 29, 2024
3.14.1 Aug 5, 2024
3.12.0 Jul 30, 2024
0.6.0 Oct 2, 2023

#6 in Machine learning

Download history 676/week @ 2024-08-04 488/week @ 2024-08-11 464/week @ 2024-08-18 415/week @ 2024-08-25 389/week @ 2024-09-01 530/week @ 2024-09-08 992/week @ 2024-09-15 1312/week @ 2024-09-22 1365/week @ 2024-09-29 683/week @ 2024-10-06 376/week @ 2024-10-13 596/week @ 2024-10-20 560/week @ 2024-10-27 550/week @ 2024-11-03 664/week @ 2024-11-10 981/week @ 2024-11-17

2,778 downloads per month
Used in 7 crates (6 directly)

Apache-2.0

395KB
2.5K SLoC

FastEmbed-rs 🦀

Rust implementation of @qdrant/fastembed

Crates.io MIT Licensed Semantic release

🍕 Features

The default model is Flag Embedding, which is top of the MTEB leaderboard.

🔍 Not looking for Rust?

🤖 Models

Text Embedding

Click to see full List

Sparse Text Embedding

Image Embedding

Reranking

🚀 Installation

Run the following command in your project directory:

cargo add fastembed

Or add the following line to your Cargo.toml:

[dependencies]
fastembed = "3"

📖 Usage

Text Embeddings

use fastembed::{TextEmbedding, InitOptions, EmbeddingModel};

// With default InitOptions
let model = TextEmbedding::try_new(Default::default())?;

// With custom InitOptions
let model = TextEmbedding::try_new(
        InitOptions::new(EmbeddingModel::AllMiniLML6V2).with_show_download_progress(true),
    )?;

let documents = vec![
    "passage: Hello, World!",
    "query: Hello, World!",
    "passage: This is an example passage.",
    // You can leave out the prefix but it's recommended
    "fastembed-rs is licensed under Apache  2.0"
    ];

 // Generate embeddings with the default batch size, 256
 let embeddings = model.embed(documents, None)?;

 println!("Embeddings length: {}", embeddings.len()); // -> Embeddings length: 4
 println!("Embedding dimension: {}", embeddings[0].len()); // -> Embedding dimension: 384

Image Embeddings

use fastembed::{ImageEmbedding, ImageInitOptions, ImageEmbeddingModel};

// With default InitOptions
let model = ImageEmbedding::try_new(Default::default())?;

// With custom InitOptions
let model = ImageEmbedding::try_new(
    ImageInitOptions::new(ImageEmbeddingModel::ClipVitB32).with_show_download_progress(true),
)?;

let images = vec!["assets/image_0.png", "assets/image_1.png"];

// Generate embeddings with the default batch size, 256
let embeddings = model.embed(images, None)?;

println!("Embeddings length: {}", embeddings.len()); // -> Embeddings length: 2
println!("Embedding dimension: {}", embeddings[0].len()); // -> Embedding dimension: 512

Candidates Reranking

use fastembed::{TextRerank, RerankInitOptions, RerankerModel};

let model = TextRerank::try_new(
    RerankInitOptions::new(RerankerModel::BGERerankerBase).with_show_download_progress(true),
)?;

let documents = vec![
    "hi",
    "The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear, is a bear species endemic to China.",
    "panda is animal",
    "i dont know",
    "kind of mammal",
];

// Rerank with the default batch size
let results = model.rerank("what is panda?", documents, true, None)?;
println!("Rerank result: {:?}", results);

Alternatively, local model files can be used for inference via the try_new_from_user_defined(...) methods of respective structs.

✊ Support

To support the library, please consider donating to our primary upstream dependency, ort - The Rust wrapper for the ONNX runtime.

⚙️ Under the hood

It's important we justify the "fast" in FastEmbed. FastEmbed is fast because of:

  1. Quantized model weights.
  2. ONNX Runtime which allows for inference on CPU, GPU, and other dedicated runtimes.
  3. No hidden dependencies via Huggingface Transformers.

📄 LICENSE

Apache 2.0 © 2024

Dependencies

~17–30MB
~520K SLoC