24 releases (4 breaking)
0.5.0 | Apr 16, 2024 |
---|---|
0.4.4 | Nov 19, 2023 |
0.4.3 | Sep 10, 2023 |
0.4.1 | Aug 25, 2023 |
0.1.91 | Aug 4, 2023 |
#3 in #vector-database
278 downloads per month
105KB
1K
SLoC
⚙️ Running ChromaDB
ℹ Chroma can be run in-memory in Python (without Docker), but this feature is not yet available in other languages. To use this library you either need a hosted or local version of ChromaDB running.
If you can run docker-compose up -d --build
you can run Chroma.
git clone https://github.com/chroma-core/chroma.git
cd chroma
# Run a ChromaDB instance at localhost:8000
docker-compose up -d --build
More information about deploying Chroma to production can be found here.
🚀 Installing the library
cargo add chromadb
The library crate can be found at crates.io.
📖 Documentation
The library reference can be found here.
🔍 Overview
The library provides 2 modules to interact with the ChromaDB server via API V1:
client
- To interface with the ChromaDB server.collection
- To interface with an associated ChromaDB collection.
You can connect to ChromaDB by instantiating a ChromaClient
use chromadb::v1::ChromaClient;
use chromadb::v1::collection::{ChromaCollection, GetQuery, GetResult, CollectionEntries};
use serde_json::json;
// With default ChromaClientOptions
// Defaults to http://localhost:8000
let client: ChromaClient = ChromaClient::new(Default::default());
// With custom ChromaClientOptions
let client: ChromaClient = ChromaClient::new(ChromaClientOptions { url: "<CHROMADB_URL>".into() });
Now that a client is instantiated, we can interface with the ChromaDB server.
// Get or create a collection with the given name and no metadata.
let collection: ChromaCollection = client.get_or_create_collection("my_collection", None)?;
// Get the UUID of the collection
let collection_uuid = collection.id();
println!("Collection UUID: {}", collection_uuid);
With a collection instance, we can perform queries on the database
// Upsert some embeddings with documents and no metadata.
let collection_entries = CollectionEntries {
ids: vec!["demo-id-1".into(), "demo-id-2".into()],
embeddings: Some(vec![vec![0.0_f32; 768], vec![0.0_f32; 768]]),
metadatas: None,
documents: Some(vec![
"Some document about 9 octopus recipies".into(),
"Some other document about DCEU Superman Vs CW Superman".into()
])
};
let result: bool = collection.upsert(collection_entries, None)?;
// Create a filter object to filter by document content.
let where_document = json!({
"$contains": "Superman"
});
// Get embeddings from a collection with filters and limit set to 1.
// An empty IDs vec will return all embeddings.
let get_query = GetQuery {
ids: vec![],
where_metadata: None,
limit: Some(1),
offset: None,
where_document: Some(where_document),
include: Some(vec!["documents".into(),"embeddings".into()])
};
let get_result: GetResult = collection.get(get_query)?;
println!("Get result: {:?}", get_result);
Find more information about the available filters and options in the get() documentation.
Performing a similarity search
//Instantiate QueryOptions to perform a similarity search on the collection
//Alternatively, an embedding_function can also be provided with query_texts to perform the search
let query = QueryOptions {
query_texts: None,
query_embeddings: Some(vec![vec![0.0_f32; 768], vec![0.0_f32; 768]]),
where_metadata: None,
where_document: None,
n_results: Some(5),
include: None,
};
let query_result: QueryResult = collection.query(query, None)?;
println!("Query result: {:?}", query_result);
Support for Embedding providers
This crate has built-in support for OpenAI and SBERT embeddings.
To use OpenAI embeddings, enable the openai
feature in your Cargo.toml.
let collection: ChromaCollection = client.get_or_create_collection("openai_collection", None)?;
let collection_entries = CollectionEntries {
ids: vec!["demo-id-1", "demo-id-2"],
embeddings: None,
metadatas: None,
documents: Some(vec![
"Some document about 9 octopus recipies",
"Some other document about DCEU Superman Vs CW Superman"])
};
// Use OpenAI embeddings
let openai_embeddings = OpenAIEmbeddings::new(Default::default());
collection.upsert(collection_entries, Some(Box::new(openai_embeddings)))?;
To use SBERT embeddings, enable the bert
feature in your Cargo.toml.
let collection_entries = CollectionEntries {
ids: vec!["demo-id-1", "demo-id-2"],
embeddings: None,
metadatas: None,
documents: Some(vec![
"Some document about 9 octopus recipies",
"Some other document about DCEU Superman Vs CW Superman"])
};
// Use SBERT embeddings
let sbert_embeddings = SentenceEmbeddingsBuilder::remote(
SentenceEmbeddingsModelType::AllMiniLmL6V2
).create_model()?;
collection.upsert(collection_entries, Some(Box::new(sbert_embeddings)))?;
Sponsors
OpenSauced provides insights into open source projects by using data science in git commits.
⚖️ LICENSE
MIT © 2023
Dependencies
~9–21MB
~391K SLoC