15 releases
new 0.3.5-rc | Jan 12, 2025 |
---|---|
0.3.3-rc | Dec 26, 2024 |
0.3.2-rc | Nov 29, 2024 |
0.3.0-rc | Jul 22, 2024 |
#436 in Web programming
283 downloads per month
130KB
929 lines
Russenger - Facebook Messenger Webhook Handling in Rust
Welcome to Russenger, a Rust library designed to simplify the handling of Facebook Messenger webhook responses. Russenger offers a convenient way to construct and send various types of responses, including text messages, quick replies, generic templates, and media attachments.
Features
- Custom Models: Developers can now use their own models with the Russenger library. This is made possible by the integration with rusql-alchemy, an ORM for sqlx. This means that models are defined in Rust code, eliminating the need to write SQL queries.
- Easy to Use: The Russenger library is designed to be easy to use. It provides a set of modules and macros that abstract away the complexities of building a bot, allowing you to focus on the logic of your application.
- Flexible: The Russenger library is flexible and can be used to build a wide variety of bots. It supports text-based conversations, quick replies, and custom actions.
Getting Started
To get started with the Russenger library, you'll need to install it as a dependency in your Rust project. You can do this by adding the following line to your Cargo.toml
file:
[dependencies]
russenger = { version = "0.3.5-rc", features = ["postgres"] } # features 'sqlite, postgres, mysql'
actix-web = "4"
sqlx = "^0.8.0"
env
PORT=8000
HOST=0.0.0.0
VERIFY_TOKEN=your_verify_token
FACEBOOK_API_VERSION=v19.0
DATABASE_URL=postgres://<username>:<password>@<hostname>/<dbname>
PAGE_ACCESS_TOKEN=your_page_acces_token_from_facebook_developer
Once you've installed the library, you can start building your bot! Check out the documentation for more information on how to use the library.
Creating a New Project
To create a new project using the Russenger library, you can use the cargo-generate
tool. Here are the steps:
- Install
cargo-generate
:
cargo install cargo-generate
- Generate a new project:
cargo generate --git https://github.com/j03-dev/russenger_template
Examples
Here are some examples of what you can build with the Russenger library:
A simple bot that greets users and asks for their name
use russenger::{models::RussengerUser, prelude::*, App};
#[derive(FromRow, Clone, Model)]
pub struct Register {
#[model(primary_key = true, auto = true)]
pub id: Integer,
#[model(foreign_key = "RussengerUser.facebook_user_id", unique = true)]
pub user_id: String,
#[model(size = 30, unique = true)]
pub username: String,
}
#[action]
async fn index(res: Res, req: Req) -> Result<()> {
res.send(TextModel::new(&req.user, "Hello!")).await?;
if let Some(user_register) =
Register::get(kwargs!(user_id == req.user), &req.query.conn).await
{
res.send(TextModel::new(
&req.user,
&format!("Hello {}", user_register.username),
))
.await?;
} else {
res.send(TextModel::new(&req.user, "What is your name: "))
.await?;
res.redirect("/signup").await?;
return Ok(());
}
get_user_input(res, req).await?;
Ok(())
}
#[action]
async fn signup(res: Res, req: Req) -> Result<()> {
let username: String = req.data.get_value();
let message = if Register::create(
kwargs!(user_id = req.user, username = username),
&req.query.conn,
)
.await
{
"Register success"
} else {
"Register failed"
};
res.send(TextModel::new(&req.user, message)).await?;
index(res, req).await?;
Ok(())
}
#[action]
async fn get_user_input(res: Res, req: Req) -> Result<()> {
let payload = |value: &str| Payload::new("/print", Some(Data::new(value)));
// QuickReply
let quick_replies: Vec<QuickReply> = vec![
QuickReply::new("blue", None, payload("blue")),
QuickReply::new("red", None, payload("red")),
];
let quick_reply_model = QuickReplyModel::new(&req.user, "choose one color", quick_replies);
res.send(quick_reply_model).await?;
Ok(())
}
#[action]
async fn print_color(res: Res, req: Req) -> Result<()> {
let color: String = req.data.get_value();
res.send(TextModel::new(&req.user, &color)).await?;
index(res, req).await?; // go back to index action
Ok(())
}
#[russenger::main]
async fn main() -> Result<()> {
let database = Database::new().await?;
let conn = database.conn;
migrate!([RussengerUser, Register], &conn);
let mut app = App::init().await?;
app.add("/", index).await;
app.add("/signup", signup).await;
app.add("/get_user_input", get_user_input).await;
app.add("/print", print_color).await;
launch(app).await?;
Ok(())
}
This example shows how to create a simple bot that greets users and asks for their name. It uses custom models to store and retrieve user data.
A bot that sends users a quick reply with a list of options and handles their response
use russenger::models::RussengerUser;
use russenger::{prelude::*, App};
#[action]
async fn index(res: Res, req: Req) {
let payload = |value: &str| Payload::new("/next", Some(Data::new(value)));
// QuickReply
let quick_replies: Vec<QuickReply> = vec![
QuickReply::new("Option 1", None, payload("Option 1")),
QuickReply::new("Option 2", None, payload("Option 2")),
QuickReply::new("Option 3", None, payload("Option 3")),
];
let quick_reply_model = QuickReplyModel::new(&req.user, "Choose an option:", quick_replies);
res.send(quick_reply_model).await?;
Ok(())
}
#[action]
async fn next(res: Res, req: Req) -> Result<()> {
let option: String = req.data.get_value();
res.send(TextModel::new(&req.user, &format!("You chose: {}", option)))
.await?;
Ok(())
}
#[russenger::main]
async fn main() -> Result<()> {
let database = Database::new().await?;
let conn = database.conn;
migrate!([RussengerUser], &conn);
let mut app = App::init().await?;
app.add("/", index).await;
app.add("/next", next).await;
launch(app).await?;
Ok(())
}
This example shows how to create a bot that sends users a quick reply with a list of options and handles their response.
Contributing
We welcome contributions to the Russenger library! If you have an idea for a new feature or have found a bug, please open an issue on the GitHub repository. If you'd like to contribute code, please fork the repository and submit a pull request.
License
The Russenger library is licensed under the MIT License. See the LICENSE file for more information.
Dependencies
~19–37MB
~661K SLoC