27 releases (16 stable)
1.9.0 | Sep 28, 2024 |
---|---|
1.6.2 | Jul 23, 2024 |
1.0.0 | Mar 30, 2024 |
0.8.0 | Feb 12, 2024 |
0.1.3 | Oct 23, 2021 |
#60 in Math
73 downloads per month
Used in 2 crates
2MB
35K
SLoC
Russell Tensor - Tensor analysis, calculus, and functions for continuum mechanics
This crate is part of Russell - Rust Scientific Library
Contents
Introduction
This library implements structures and functions for tensor analysis and calculus. The library focuses on applications in engineering and [Continuum Mechanics](Continuum Mechanics). The essential functionality for the targeted applications includes second-order and fourth-order tensors, scalar "invariants," and derivatives.
This library implements derivatives for scalar functions with respect to tensors, tensor functions with respect to tensors, and others. A convenient basis representation known as Mandel basis (similar to Voigt notation) is considered by this library internally. The user may also use the Mandel basis to perform simpler matrix-vector operations directly.
Documentation
Installation
This crate depends on some non-rust high-performance libraries. See the main README file for the steps to install these dependencies.
Setting Cargo.toml
👆 Check the crate version and update your Cargo.toml accordingly:
[dependencies]
russell_tensor = "*"
Optional features
The following (Rust) features are available:
intel_mkl
: Use Intel MKL instead of OpenBLAS
Note that the main README file presents the steps to compile the required libraries according to each feature.
🌟 Examples
This section illustrates how to use russell_tensor
. See also:
Allocating Second Order Tensors
use russell_tensor::{Mandel, StrError, Tensor2, SQRT_2};
fn main() -> Result<(), StrError> {
// general
let a = Tensor2::from_matrix(
&[
[1.0, SQRT_2 * 2.0, SQRT_2 * 3.0],
[SQRT_2 * 4.0, 5.0, SQRT_2 * 6.0],
[SQRT_2 * 7.0, SQRT_2 * 8.0, 9.0],
],
Mandel::General,
)?;
assert_eq!(
format!("{:.1}", a.vector()),
"┌ ┐\n\
│ 1.0 │\n\
│ 5.0 │\n\
│ 9.0 │\n\
│ 6.0 │\n\
│ 14.0 │\n\
│ 10.0 │\n\
│ -2.0 │\n\
│ -2.0 │\n\
│ -4.0 │\n\
└ ┘"
);
// symmetric-3D
let b = Tensor2::from_matrix(
&[
[1.0, 4.0 / SQRT_2, 6.0 / SQRT_2],
[4.0 / SQRT_2, 2.0, 5.0 / SQRT_2],
[6.0 / SQRT_2, 5.0 / SQRT_2, 3.0],
],
Mandel::Symmetric,
)?;
assert_eq!(
format!("{:.1}", b.vector()),
"┌ ┐\n\
│ 1.0 │\n\
│ 2.0 │\n\
│ 3.0 │\n\
│ 4.0 │\n\
│ 5.0 │\n\
│ 6.0 │\n\
└ ┘"
);
// symmetric-2D
let c = Tensor2::from_matrix(
&[[1.0, 4.0 / SQRT_2, 0.0], [4.0 / SQRT_2, 2.0, 0.0], [0.0, 0.0, 3.0]],
Mandel::Symmetric2D,
)?;
assert_eq!(
format!("{:.1}", c.vector()),
"┌ ┐\n\
│ 1.0 │\n\
│ 2.0 │\n\
│ 3.0 │\n\
│ 4.0 │\n\
└ ┘"
);
Ok(())
}