27 releases (15 stable)
1.9.0 | Sep 28, 2024 |
---|---|
1.6.2 | Jul 23, 2024 |
1.0.0 | Mar 30, 2024 |
0.8.0 | Feb 12, 2024 |
0.1.1 | Jun 21, 2021 |
#186 in Math
Used in 2 crates
(via gemlab)
1.5MB
26K
SLoC
Russell Stat - Statistics calculations and (engineering) probability distributions
This crate is part of Russell - Rust Scientific Library
Contents
Introduction
This library assists in developing statistical computations and simulations aiming at engineering applications, such as reliability analyses. This library provides a light interface to rand_distr and implements extra functionality.
Some essential distributions considered in this library are those classified as Extreme Value Distribution.
The figure below shows an application in structural safety (see Reference #1) using first-order reliability modeling (see Reference #2).
Documentation
References
- Pedroso DM (2017) FORM reliability analysis using a parallel evolutionary algorithm, Structural Safety, 65:84-99
- Zhang et al. (2023) Geotechnical Reliability Analysis: Theories, Methods, and Algorithms, Springer, 323p
Installation
This crate depends on some non-rust high-performance libraries. See the main README file for the steps to install these dependencies.
Setting Cargo.toml
👆 Check the crate version and update your Cargo.toml accordingly:
[dependencies]
russell_stat = "*"
Optional features
The following (Rust) features are available:
intel_mkl
: Use Intel MKL instead of OpenBLAS
Note that the main README file presents the steps to compile the required libraries according to each feature.
🌟 Examples
This section illustrates how to use russell_stat
. See also:
Frechet distribution
use russell_stat::*;
fn main() -> Result<(), StrError> {
// generate samples
let mut rng = get_rng();
let dist = DistributionFrechet::new(0.0, 1.0, 1.0)?;
let nsamples = 10_000;
let mut data = vec![0.0; nsamples];
for i in 0..nsamples {
data[i] = dist.sample(&mut rng);
}
println!("{}", statistics(&data));
// text-plot
let stations = (0..20).map(|i| (i as f64) * 0.5).collect::<Vec<f64>>();
let mut hist = Histogram::new(&stations)?;
hist.count(&data);
println!("{}", hist);
Ok(())
}
Sample output:
min = 0.09073675834496424
max = 7694.599272007603
mean = 10.392955760859788
std_dev = 137.11729225249485
[ 0,0.5) | 1407 🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦
[0.5, 1) | 2335 🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦
[ 1,1.5) | 1468 🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦
[1.5, 2) | 913 🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦🟦
[ 2,2.5) | 640 🟦🟦🟦🟦🟦🟦🟦🟦
[2.5, 3) | 420 🟦🟦🟦🟦🟦
[ 3,3.5) | 358 🟦🟦🟦🟦
[3.5, 4) | 269 🟦🟦🟦
[ 4,4.5) | 207 🟦🟦
[4.5, 5) | 185 🟦🟦
[ 5,5.5) | 143 🟦
[5.5, 6) | 137 🟦
[ 6,6.5) | 99 🟦
[6.5, 7) | 76
[ 7,7.5) | 88 🟦
[7.5, 8) | 73
[ 8,8.5) | 51
[8.5, 9) | 63
[ 9,9.5) | 53
sum = 8985
Gumbel distribution
use russell_stat::*;
fn main() -> Result<(), StrError> {
// generate samples
let mut rng = get_rng();
let dist = DistributionGumbel::new(0.5, 2.0)?;
let nsamples = 10_000;
let mut data = vec![0.0; nsamples];
for i in 0..nsamples {
data[i] = dist.sample(&mut rng);
}
println!("{}", statistics(&data));
// text-plot
let stations = (0..20).map(|i| -5.0 + (i as f64)).collect::<Vec<f64>>();
let mut hist = Histogram::new(&stations)?;
hist.set_bar_char('#').set_bar_max_len(40);
hist.count(&data);
println!("{}", hist);
Ok(())
}
Sample output
min = -3.8702217016220706
max = 18.48991150178352
mean = 1.68369488450194
std_dev = 2.5805268053167527
[-5,-4) | 0
[-4,-3) | 38
[-3,-2) | 264 #####
[-2,-1) | 929 ###################
[-1, 0) | 1457 ###############################
[ 0, 1) | 1880 ########################################
[ 1, 2) | 1610 ##################################
[ 2, 3) | 1283 ###########################
[ 3, 4) | 910 ###################
[ 4, 5) | 604 ############
[ 5, 6) | 398 ########
[ 6, 7) | 226 ####
[ 7, 8) | 153 ###
[ 8, 9) | 96 ##
[ 9,10) | 57 #
[10,11) | 42
[11,12) | 22
[12,13) | 9
[13,14) | 14
sum = 9992
Normal distribution
use russell_stat::*;
fn main() -> Result<(), StrError> {
// generate samples
let mut rng = get_rng();
let dist = DistributionNormal::new(0.0, 1.0)?;
let nsamples = 10_000;
let mut data = vec![0.0; nsamples];
for i in 0..nsamples {
data[i] = dist.sample(&mut rng);
}
println!("{}", statistics(&data));
// text-plot
let stations = (0..20).map(|i| -4.0 + (i as f64) * 0.5).collect::<Vec<f64>>();
let mut hist = Histogram::new(&stations)?;
hist.set_bar_char('🍕').set_bar_max_len(30);
hist.count(&data);
println!("{:.2}", hist);
Ok(())
}
Sample output:
min = -3.466424128646902
max = 3.608012748101761
mean = 0.003299589990111208
std_dev = 0.9760553437435371
[-4.00,-3.50) | 0
[-3.50,-3.00) | 10
[-3.00,-2.50) | 41
[-2.50,-2.00) | 156 🍕🍕
[-2.00,-1.50) | 443 🍕🍕🍕🍕🍕🍕
[-1.50,-1.00) | 869 🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕
[-1.00,-0.50) | 1450 🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕
[-0.50, 0.00) | 1971 🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕
[ 0.00, 0.50) | 1996 🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕
[ 0.50, 1.00) | 1499 🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕
[ 1.00, 1.50) | 951 🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕🍕
[ 1.50, 2.00) | 419 🍕🍕🍕🍕🍕🍕
[ 2.00, 2.50) | 150 🍕🍕
[ 2.50, 3.00) | 34
[ 3.00, 3.50) | 10
[ 3.50, 4.00) | 1
[ 4.00, 4.50) | 0
[ 4.50, 5.00) | 0
[ 5.00, 5.50) | 0
sum = 10000
Lognormal distribution
use russell_stat::*;
fn main() -> Result<(), StrError> {
// generate samples
let mut rng = get_rng();
let dist = DistributionLognormal::new(0.0, 0.25)?;
let nsamples = 10_000;
let mut data = vec![0.0; nsamples];
for i in 0..nsamples {
data[i] = dist.sample(&mut rng);
}
println!("{}", statistics(&data));
// text-plot
let stations = (0..25).map(|i| (i as f64) * 0.1).collect::<Vec<f64>>();
let mut hist = Histogram::new(&stations)?;
hist.set_bar_char('✨').set_bar_max_len(30);
hist.count(&data);
println!("{:.2}", hist);
Ok(())
}
Sample output:
min = 0.42738183908592275
max = 2.5343346501352135
mean = 1.0330160154674082
std_dev = 0.2610005570820734
[0.00,0.10) | 0
[0.10,0.20) | 0
[0.20,0.30) | 0
[0.30,0.40) | 0
[0.40,0.50) | 33
[0.50,0.60) | 155 ✨✨
[0.60,0.70) | 558 ✨✨✨✨✨✨✨✨✨✨
[0.70,0.80) | 1092 ✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨
[0.80,0.90) | 1494 ✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨
[0.90,1.00) | 1622 ✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨
[1.00,1.10) | 1509 ✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨
[1.10,1.20) | 1275 ✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨
[1.20,1.30) | 817 ✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨
[1.30,1.40) | 552 ✨✨✨✨✨✨✨✨✨✨
[1.40,1.50) | 364 ✨✨✨✨✨✨
[1.50,1.60) | 202 ✨✨✨
[1.60,1.70) | 151 ✨✨
[1.70,1.80) | 77 ✨
[1.80,1.90) | 49
[1.90,2.00) | 21
[2.00,2.10) | 14
[2.10,2.20) | 7
[2.20,2.30) | 5
[2.30,2.40) | 0
sum = 9997
Uniform distribution
use russell_stat::*;
fn main() -> Result<(), StrError> {
// generate samples
let mut rng = get_rng();
let dist = DistributionUniform::new(-10.0, 10.0)?;
let nsamples = 10_000;
let mut data = vec![0.0; nsamples];
for i in 0..nsamples {
data[i] = dist.sample(&mut rng);
}
println!("{}", statistics(&data));
// text-plot
let stations = (0..21).map(|i| -10.0 + (i as f64)).collect::<Vec<f64>>();
let mut hist = Histogram::new(&stations)?;
hist.set_bar_char('🟪').set_bar_max_len(30);
hist.count(&data);
println!("{:.2}", hist);
Ok(())
}
Sample output:
min = -9.995565022955866
max = 9.997897516369218
mean = 0.006907240624592568
std_dev = 5.761189943810604
[-10.00, -9.00) | 488 🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪
[ -9.00, -8.00) | 488 🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪
[ -8.00, -7.00) | 490 🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪
[ -7.00, -6.00) | 537 🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪
[ -6.00, -5.00) | 503 🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪
[ -5.00, -4.00) | 510 🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪
[ -4.00, -3.00) | 487 🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪
[ -3.00, -2.00) | 453 🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪
[ -2.00, -1.00) | 537 🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪
[ -1.00, 0.00) | 518 🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪
[ 0.00, 1.00) | 499 🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪
[ 1.00, 2.00) | 496 🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪
[ 2.00, 3.00) | 466 🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪
[ 3.00, 4.00) | 521 🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪
[ 4.00, 5.00) | 490 🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪
[ 5.00, 6.00) | 498 🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪
[ 6.00, 7.00) | 518 🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪
[ 7.00, 8.00) | 513 🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪
[ 8.00, 9.00) | 535 🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪
[ 9.00, 10.00) | 453 🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪🟪
sum = 10000