#prefix-tree #trie #rust

prefix-tree-rs

A Trie (prefix tree) implementation

2 releases

0.1.1 Dec 18, 2024
0.1.0 Dec 18, 2024

#873 in Data structures

Download history 178/week @ 2024-12-13 35/week @ 2024-12-20

213 downloads per month

MIT license

8KB
70 lines

Prefix Tree (Trie) Implementation in Rust

A lightweight and efficient implementation of a Trie (prefix tree) data structure in Rust. This library provides a way to store and retrieve strings based on their prefixes, making it ideal for applications like autocomplete, spell checkers, and IP routing tables.

Features

  • Fast prefix-based string operations
  • Memory-efficient storage of strings with common prefixes
  • Simple and intuitive API
  • Fully documented with examples
  • Comprehensive test coverage

Installation

Add this to your Cargo.toml:

[dependencies]
prefix_tree_rs = "0.1.1"

Usage

Basic Example

use prefix_tree_rs::Trie;

fn main() {
    // Create a new Trie
    let mut trie = Trie::new();

    // Insert some words
    trie.insert("hello");
    trie.insert("world");
    trie.insert("helm");

    // Search for words
    assert!(trie.search("hello"));     // true
    assert!(!trie.search("hell"));     // false

    // Check prefixes
    assert!(trie.starts_with("he"));   // true
    assert!(!trie.starts_with("wo")); // true
}

API Reference

Trie::new()

Creates a new, empty Trie.

Trie::insert(&mut self, word: &str)

Inserts a word into the Trie.

Trie::search(&self, word: &str) -> bool

Checks if a word exists in the Trie.

Trie::starts_with(&self, prefix: &str) -> bool

Checks if there is any word in the Trie that starts with the given prefix.

Implementation Details

The Trie is implemented using two main structures:

  • Trie: The main structure containing the root node
  • TrieNode: Individual nodes containing:
    • A boolean flag indicating if it's the end of a word
    • A HashMap of child nodes mapped by characters

Performance

  • Time Complexity:

    • Insertion: O(m) where m is the length of the word
    • Search: O(m) where m is the length of the word
    • Prefix checking: O(p) where p is the length of the prefix
  • Space Complexity:

    • O(ALPHABET_SIZE * N * W) where N is the number of words and W is the average word length

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

This project is licensed under the MIT License - see the LICENSE file for details.

No runtime deps