6 releases
new 0.2.0 | Jan 17, 2025 |
---|---|
0.1.4 | Jan 16, 2025 |
#234 in Algorithms
387 downloads per month
130KB
1.5K
SLoC
EvalExpr-JIT
A high-performance mathematical expression evaluator with JIT compilation and automatic differentiation support. Builds on top of evalexpr and Cranelift.
Features
- š JIT compilation for fast expression evaluation
- š Automatic differentiation (up to any order)
- š¢ Support for multiple variables with consistent ordering
- š§® Higher-order partial derivatives
- š Jacobian matrix computation
- š Batch evaluation of equation systems
This crate is still under development and the API is subject to change.
Installation
Install the crate from crates.io:
cargo add evalexpr-jit
or add this to your Cargo.toml
:
[dependencies]
evalexpr-jit = "0.1.2" # Replace with actual version
Quick Start
Single Equation
The Equation
struct provides a simple way to evaluate mathematical expressions and compute their derivatives. Variables are automatically detected from the expression and ordered alphabetically.
use evalexpr_jit::Equation;
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Create a single equation
let eq = Equation::new("2*x + y^2".to_string())?;
// Evaluate at point (x=1, y=2)
let result = eq.eval(&[1.0, 2.0])?;
assert_eq!(result, 6.0); // 2*1 + 2^2 = 6
// Compute gradient (vector of partial derivatives)
let gradient = eq.gradient(&[1.0, 2.0])?;
assert_eq!(gradient, vec![2.0, 4.0]); // [ā/āx, ā/āy] = [2, 2y]
// Compute Hessian matrix (matrix of second derivatives)
let hessian = eq.hessian(&[1.0, 2.0])?;
assert_eq!(hessian, vec![
vec![0.0, 0.0], // [āĀ²/āxĀ², āĀ²/āxāy]
vec![0.0, 2.0], // [āĀ²/āyāx, āĀ²/āyĀ²]
]);
Ok(())
}
System of Equations
The EquationSystem
struct allows you to evaluate multiple equations simultaneously, sharing variables across equations for efficient computation. Variables are automatically collected from all equations and consistently ordered.
use evalexpr_jit::system::EquationSystem;
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Create a system of equations
let system = EquationSystem::new(vec![
"2*x + y".to_string(), // first equation
"x^2 + z".to_string(), // second equation
])?;
// Variables are automatically sorted (x, y, z)
// Input values must be provided in the same order
let results = system.eval(&[1.0, 2.0, 3.0])?;
assert_eq!(results, vec![
4.0, // eq1: 2*1 + 2 = 4
4.0 // eq2: 1^2 + 3 = 4
]);
// Get the sorted variable names to ensure correct input ordering
println!("Variables: {:?}", system.sorted_variables); // ["x", "y", "z"]
Ok(())
}
Advanced Usage
Single Equation Derivatives
The Equation
struct provides multiple ways to compute derivatives, from simple partial derivatives to higher-order mixed derivatives:
use evalexpr_jit::Equation;
fn main() -> Result<(), Box<dyn std::error::Error>> {
let eq = Equation::new("x^2 * y^2".to_string())?;
// Get first-order partial derivative
let dx = eq.derivative("x")?;
let result = dx(&[2.0, 3.0]);
assert_eq!(result, 36.0); // d/dx[x^2*y^2] = 2x*y^2 = 2*2*3^2
// Compute higher-order mixed derivative
let dxdy = eq.derive_wrt(&["x", "y"])?;
let result = dxdy(&[2.0, 3.0]);
assert_eq!(result, 12.0); // dĀ²/dxdy[x^2*y^2] = 4xy
Ok(())
}
System Derivatives and Jacobian
The EquationSystem
struct provides tools for analyzing the derivatives of multiple equations simultaneously:
use evalexpr_jit::system::EquationSystem;
fn main() -> Result<(), Box<dyn std::error::Error>> {
let system = EquationSystem::new(vec![
"x^2*y".to_string(), // f1
"x*y^2".to_string(), // f2
])?;
// Compute Jacobian matrix at point (2,3)
let jacobian = system.jacobian(&[2.0, 3.0])?;
// Jacobian matrix:
// [āf1/āx āf1/āy] = [12.0 4.0] // derivatives of f1
// [āf2/āx āf2/āy] = [9.0 12.0] // derivatives of f2
assert_eq!(jacobian[0], vec![12.0, 4.0]); // derivatives of f1
assert_eq!(jacobian[1], vec![9.0, 12.0]); // derivatives of f2
// Compute higher-order derivatives of the system
let d2 = system.derive_wrt(&["x", "y"])?;
let mut results = vec![0.0; 2];
d2(&[2.0, 3.0], &mut results);
assert_eq!(results, vec![
4.0, // dĀ²/dxdy[x^2*y] = 2x
6.0 // dĀ²/dxdy[x*y^2] = 2y
]);
// Custom Jacobian
let jacobian = system.jacobian_wrt(&["x", "y"])?;
let mut results = vec![vec![0.0; 2]; 2]; // Pre-allocate matrix [2 equations Ć 2 variables]
jacobian(&[2.0, 3.0], &mut results);
assert_eq!(results, vec![
vec![12.0, 4.0], // [āf1/āx = 2xy = 12.0, āf1/āy = x^2 = 4.0]
vec![9.0, 12.0], // [āf2/āx = y^2 = 9.0, āf2/āy = 2xy = 12.0]
]);
Ok(())
}
Notes on Parameters and Variables
When working with expressions that contain both parameters and independent variables, you can use derive_wrt_stack
to compute derivatives with respect to parameters only. This is particularly useful for parameter estimation and optimization problems.
use evalexpr_jit::Equation;
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Expression with parameters (a, b) and variables (x, y)
let eq = Equation::new("a*x^2 + b*y^2".to_string())?;
// Returns a JITFunction that computes the gradient of the
// equation with respect to the parameters only
let param_gradient = eq.derive_wrt_stack(&["a", "b"])?;
// Values provided in alphabetical order: [a, b, x, y]
let result = param_gradient(&[2.0, 3.0, 1.0, 2.0]);
assert_eq!(result, vec![1.0, 4.0]); // [ā/āa = x^2, ā/āb = y^2]
Ok(())
}
Note that variables are always sorted alphabetically when providing input values, if no specific order is provided. In the example above, the order is [a, b, x, y]
. You can check the ordering using eq.sorted_variables
. If you want to provide a specific order, you can use from_var_map
and provide a map of variable names to indices:
let eq = Equation::from_var_map(vec!["a*x^2 + b*y^2".to_string()], &["a", "b", "x", "y"])?;
API Reference
Equation
The basic struct for single equation evaluation:
new(equation: String) -> Result<Self, EquationError>
eval(&self, values: &[f64]) -> Result<f64, EquationError>
gradient(&self, values: &[f64]) -> Result<Vec<f64>, EquationError>
hessian(&self, values: &[f64]) -> Result<Vec<Vec<f64>>, EquationError>
derivative(&self, variable: &str) -> Result<JITFunction, EquationError>
derive_wrt(&self, variables: &[&str]) -> Result<JITFunction, EquationError>
derive_wrt_stack(&self, variables: &[&str]) -> Result<JITFunction, EquationError>
EquationSystem
For evaluating systems of equations:
new(expressions: Vec<String>) -> Result<Self, EquationError>
from_var_map(expressions: Vec<String>, variable_map: &HashMap<String, u32>) -> Result<Self, EquationError>
eval(&self, inputs: &[f64]) -> Result<Vec<f64>, EquationError>
eval_into(&self, inputs: &[f64], output: &mut [f64]) -> Result<(), EquationError>
eval_parallel(&self, input_sets: &[Vec<f64>]) -> Result<Vec<Vec<f64>>, EquationError>
gradient(&self, inputs: &[f64], variable: &str) -> Result<Vec<f64>, EquationError>
jacobian(&self, inputs: &[f64]) -> Result<Vec<Vec<f64>>, EquationError>
jacobian_wrt(&self, inputs: &[f64], variables: &[&str]) -> Result<MatrixJITFunction, EquationError>
derive_wrt(&self, variables: &[&str]) -> Result<CombinedJITFunction, EquationError>
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Dependencies
~10ā18MB
~280K SLoC