1 stable release

new 1.0.0 Mar 31, 2025

#13 in #tiny-ml

BSD-3-Clause

100KB
1.5K SLoC

Edge Impulse

Edge Impulse Tests Docs

A Rust library for running inference with Edge Impulse Linux models (EIM) and uploading data to Edge Impulse. This crate provides a safe and easy-to-use interface for interacting with Edge Impulse machine learning models compiled for Linux and MacOS.

Features

  • Upload data to Edge Impulse
  • Run Edge Impulse models (.eim files) on Linux and MacOS
  • Support for different model types:
    • Classification models
    • Object detection models
    • Visual anomaly detection
  • Support for different sensor types:
    • Camera
    • Microphone
  • Continuous classification mode support
  • Debug output option

Inference Communication Protocol

The Edge Impulse Inference Runner uses a Unix socket-based IPC mechanism to communicate with the model process. The protocol is JSON-based and follows a request-response pattern.

Protocol Messages

1. Initialization

When a new model is created, the following sequence occurs:

HelloMessage (Runner -> Model):
{
    "hello": 1,
    "id": 1
}
ModelInfo Response (Model -> Runner):
{
    "success": true,
    "id": 1,
    "model_parameters": {
        "axis_count": 1,
        "frequency": 16000.0,
        "has_anomaly": 0,
        "image_channel_count": 3,
        "image_input_frames": 1,
        "image_input_height": 96,
        "image_input_width": 96,
        "image_resize_mode": "fit-shortest",
        "inferencing_engine": 4,
        "input_features_count": 9216,
        "interval_ms": 1.0,
        "label_count": 1,
        "labels": ["class1"],
        "model_type": "classification",
        "sensor": 3,
        "slice_size": 2304,
        "threshold": 0.5,
        "use_continuous_mode": false
    },
    "project": {
        "deploy_version": 1,
        "id": 12345,
        "name": "Project Name",
        "owner": "Owner Name"
    }
}

2. Inference

For each inference request:

ClassifyMessage (Runner -> Model):
{
    "classify": [0.1, 0.2, 0.3],
    "id": 1,
    "debug": false
}
InferenceResponse (Model -> Runner):

For classification models:

{
    "success": true,
    "id": 2,
    "result": {
        "classification": {
            "class1": 0.8,
            "class2": 0.2
        }
    }
}

For object detection models:

{
    "success": true,
    "id": 2,
    "result": {
        "bounding_boxes": [
            {
                "label": "object1",
                "value": 0.95,
                "x": 100,
                "y": 150,
                "width": 50,
                "height": 50
            }
        ],
        "classification": {
            "class1": 0.8,
            "class2": 0.2
        }
    }
}

For visual anomaly detection models:

{
    "success": true,
    "id": 2,
    "result": {
        "visual_anomaly": {
            "anomaly": 5.23,
            "visual_anomaly_max": 7.89,
            "visual_anomaly_mean": 4.12,
            "visual_anomaly_grid": [
                {
                    "value": 0.955,
                    "x": 24,
                    "y": 40,
                    "width": 8,
                    "height": 16
                }
            ]
        }
    }
}

3. Error Response

When errors occur:

ErrorResponse (Model -> Runner):
{
    "success": false,
    "error": "Error message",
    "id": 2
}

Ingestion

The ingestion module allows you to upload data to Edge Impulse using the Edge Impulse Ingestion API.

Installation

Add this to your Cargo.toml:

edge-impulse-runner = "1.0.0"

Quick Start

Inference

use edge_impulse_runner::EimModel;

fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create a new model instance
    let mut model = EimModel::new("path/to/model.eim")?;

    // Get model information
    let params = model.parameters()?;
    println!("Model type: {}", params.model_type);

    // Check sensor type
    match model.sensor_type()? {
        SensorType::Camera => println!("Camera model"),
        SensorType::Microphone => println!("Audio model"),
        SensorType::Accelerometer => println!("Motion model"),
        SensorType::Positional => println!("Position model"),
        SensorType::Other => println!("Other sensor type"),
    }

    // Run inference with normalized features
    let raw_features = vec![128, 128, 128];  // Example raw values
    let features: Vec<f32> = raw_features.into_iter().map(|x| x as f32 / 255.0).collect();
    let result = model.infer(features, None)?;

    // Handle the results based on model type
    match result.result {
        InferenceResult::Classification { classification } => {
            for (label, probability) in classification {
                println!("{}: {:.2}", label, probability);
            }
        }
        InferenceResult::ObjectDetection { bounding_boxes, classification } => {
            for bbox in bounding_boxes {
                println!("Found {} at ({}, {}) with confidence {:.2}",
                    bbox.label, bbox.x, bbox.y, bbox.value);
            }
            if !classification.is_empty() {
                println!("\nOverall classification:");
                for (label, prob) in classification {
                    println!("{}: {:.2}", label, prob);
                }
            }
        }
        InferenceResult::VisualAnomaly { visual_anomaly_grid, visual_anomaly_max, visual_anomaly_mean, anomaly } => {
            // Normalize the anomaly scores
            let (normalized_anomaly, normalized_max, normalized_mean, normalized_regions) =
                model.normalize_visual_anomaly(
                    anomaly,
                    visual_anomaly_max,
                    visual_anomaly_mean,
                    &visual_anomaly_grid.iter()
                        .map(|bbox| (bbox.value, bbox.x as u32, bbox.y as u32, bbox.width as u32, bbox.height as u32))
                        .collect::<Vec<_>>()
                );

            println!("Anomaly score: {:.2}%", normalized_anomaly * 100.0);
            println!("Maximum score: {:.2}%", normalized_max * 100.0);
            println!("Mean score: {:.2}%", normalized_mean * 100.0);

            // Print detected regions
            for (value, x, y, w, h) in normalized_regions {
                println!("Region: score={:.2}%, x={}, y={}, width={}, height={}",
                    value * 100.0, x, y, w, h);
            }
        }
    }

    Ok(())
}

Ingestion

use edge_impulse_runner::ingestion::{Category, Ingestion, UploadOptions};
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create client with your API key
    let ingestion = Ingestion::new("your-api-key").with_debug(); // Optional: enable debug output
    // Upload a file (image, audio, video, etc.)
    let result = ingestion
        .upload_file(
            "path/to/file.jpg",
            Category::Training,
            Some("label".to_string()),
            Some(UploadOptions {
                disallow_duplicates: true,
                add_date_id: true,
            }),
        )
        .await?;
    println!("Upload successful: {}", result);
    Ok(())
}

Examples

All examples are located in the examples directory and accept a --debug flag to enable debug output.

These examples have only been tested on MacOS.

Basic Classification

The simplest example allows you to run inference by providing the features array via command line:

# Format: comma-separated feature values
cargo run --example basic_infer -- --model path/to/model.eim --features "0.1,0.2,0.3"

The features array format depends on your model:

  • For audio models: Raw audio samples
  • For image models: RGB pixel values
  • For accelerometer: X, Y, Z values
  • For other sensors: Check your model's specifications

Audio Classification

The repository includes an example that demonstrates audio classification using Edge Impulse models.

To run the audio classification example:

cargo run --example audio_infer -- --model <path_to_model.eim> --audio <path_to_audio.wav> [--debug]

Example output:

Audio file specs: WavSpec { channels: 1, sample_rate: 16000, bits_per_sample: 16, sample_format: Int }
Read 16000 samples from audio file
Model expects 16000 samples
Using 16000 samples for classification
INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
Classification result: InferenceResponse { success: true, id: 2, result: Classification { classification: {"noise": 0.96875, "no": 0.015625, "yes": 0.01953125} } }

Inference on Images

The repository includes an example that demonstrates inference on images using Edge Impulse models:

To run the image inference example:

cargo run --example image_infer -- --model path/to/model.eim --image path/to/image.jpg

Example output on a object detection model:

Detected objects:
----------------
- mug (90.62%): x=24, y=40, width=8, height=16

Video inference

The repository includes an example that demonstrates inference on video using Edge Impulse models:

To run the video example:

cargo run --example video_infer -- --model path/to/model.eim

Example output for an object detection model:

Model Parameters:
----------------
ModelParameters {
    axis_count: 1,
    frequency: 0.0,
    has_anomaly: 0,
    image_channel_count: 3,
    image_input_frames: 1,
    image_input_height: 96,
    image_input_width: 96,
    image_resize_mode: "fit-shortest",
    inferencing_engine: 4,
    input_features_count: 9216,
    interval_ms: 1.0,
    label_count: 1,
    labels: [
        "mug",
    ],
    model_type: "constrained_object_detection",
    sensor: 3,
    slice_size: 2304,
    threshold: 0.5,
    use_continuous_mode: false,
}
----------------

Model expects 96x96 input with 3 channels (9216 features)
Image format will be 96x96 with 3 channels
Setting up pipeline for 96x96 input with 3 channels
INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
No objects detected
Detected objects: [BoundingBox { label: "mug", value: 0.53125, x: 56, y: 48, width: 8, height: 8 }]
Detected objects: [BoundingBox { label: "mug", value: 0.53125, x: 56, y: 40, width: 8, height: 8 }]
Detected objects: [BoundingBox { label: "mug", value: 0.53125, x: 48, y: 40, width: 8, height: 8 }]
Detected objects: [BoundingBox { label: "mug", value: 0.53125, x: 56, y: 40, width: 8, height: 8 }]
Detected objects: [BoundingBox { label: "mug", value: 0.5625, x: 48, y: 40, width: 8, height: 8 }]

Upload Image

cargo run --example upload_image -- \
  -a "ei_..." \
  -c "training" \
  -f ~/Downloads/mug.5jn81s9p.jpg \
  --debug

Development

Running Tests

cargo test

Error Handling

The crate provides detailed error types through EimError:

  • FileError: Issues with accessing the EIM file
  • InvalidPath: Invalid file path or extension
  • ExecutionError: Problems running the EIM model
  • SocketError: Unix socket communication issues
  • JsonError: JSON serialization/deserialization errors
  • InvalidInput: Invalid input features or parameters
  • InvalidOperation: Operation not supported by the model (e.g., continuous mode)

Example error handling:

use edge_impulse_runner::{EimModel, EimError};

fn main() {
    match EimModel::new("path/to/model.eim") {
        Ok(mut model) => {
            match model.infer(vec![0.1, 0.2, 0.3], None) {
                Ok(result) => println!("Classification successful"),
                Err(EimError::InvalidInput(msg)) => println!("Invalid input: {}", msg),
                Err(EimError::ExecutionError(msg)) => println!("Model execution failed: {}", msg),
                Err(e) => println!("Other error: {}", e),
            }
        },
        Err(EimError::FileError(e)) => println!("File error: {}", e),
        Err(e) => println!("Error creating model: {}", e),
    }
}

Development Setup

Prerequisites

1. Install Rust

Install Rust using rustup (recommended method):

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

Follow the on-screen instructions and restart your terminal. Verify the installation with:

rustc --version
cargo --version

2. GStreamer (Optional)

GStreamer is only required if you want to run the video-related examples (like video_infer). It is not needed for developing the library or running other examples.

If you want to run the video examples:

macOS

Download and install both packages:

Ubuntu/Debian
sudo apt-get update
sudo apt-get install -y \
    libgstreamer1.0-dev \
    libgstreamer-plugins-base1.0-dev \
    libgstreamer-plugins-bad1.0-dev \
    gstreamer1.0-plugins-base \
    gstreamer1.0-plugins-good \
    gstreamer1.0-plugins-bad \
    gstreamer1.0-plugins-ugly \
    gstreamer1.0-libav \
    gstreamer1.0-tools
Other Linux Distributions

For other Linux distributions, please refer to the official GStreamer installation instructions.

Note: Windows support is currently untested.

Verifying GStreamer Installation

If you installed GStreamer, you can verify your installation by running:

gst-launch-1.0 --version

If you see version information, GStreamer is correctly installed.

Acknowledgments

This crate is designed to work with Edge Impulse's machine learning models. For more information about Edge Impulse and their ML deployment solutions, visit Edge Impulse.

License

This project is licensed under the BSD 3-Clause Clear License - see the LICENSE file for details.

Dependencies

~5–17MB
~228K SLoC