1 stable release
new 1.0.0 | Mar 31, 2025 |
---|
#13 in #tiny-ml
100KB
1.5K
SLoC
Edge Impulse
A Rust library for running inference with Edge Impulse Linux models (EIM) and uploading data to Edge Impulse. This crate provides a safe and easy-to-use interface for interacting with Edge Impulse machine learning models compiled for Linux and MacOS.
Features
- Upload data to Edge Impulse
- Run Edge Impulse models (.eim files) on Linux and MacOS
- Support for different model types:
- Classification models
- Object detection models
- Visual anomaly detection
- Support for different sensor types:
- Camera
- Microphone
- Continuous classification mode support
- Debug output option
Inference Communication Protocol
The Edge Impulse Inference Runner uses a Unix socket-based IPC mechanism to communicate with the model process. The protocol is JSON-based and follows a request-response pattern.
Protocol Messages
1. Initialization
When a new model is created, the following sequence occurs:
HelloMessage (Runner -> Model):
{
"hello": 1,
"id": 1
}
ModelInfo Response (Model -> Runner):
{
"success": true,
"id": 1,
"model_parameters": {
"axis_count": 1,
"frequency": 16000.0,
"has_anomaly": 0,
"image_channel_count": 3,
"image_input_frames": 1,
"image_input_height": 96,
"image_input_width": 96,
"image_resize_mode": "fit-shortest",
"inferencing_engine": 4,
"input_features_count": 9216,
"interval_ms": 1.0,
"label_count": 1,
"labels": ["class1"],
"model_type": "classification",
"sensor": 3,
"slice_size": 2304,
"threshold": 0.5,
"use_continuous_mode": false
},
"project": {
"deploy_version": 1,
"id": 12345,
"name": "Project Name",
"owner": "Owner Name"
}
}
2. Inference
For each inference request:
ClassifyMessage (Runner -> Model):
{
"classify": [0.1, 0.2, 0.3],
"id": 1,
"debug": false
}
InferenceResponse (Model -> Runner):
For classification models:
{
"success": true,
"id": 2,
"result": {
"classification": {
"class1": 0.8,
"class2": 0.2
}
}
}
For object detection models:
{
"success": true,
"id": 2,
"result": {
"bounding_boxes": [
{
"label": "object1",
"value": 0.95,
"x": 100,
"y": 150,
"width": 50,
"height": 50
}
],
"classification": {
"class1": 0.8,
"class2": 0.2
}
}
}
For visual anomaly detection models:
{
"success": true,
"id": 2,
"result": {
"visual_anomaly": {
"anomaly": 5.23,
"visual_anomaly_max": 7.89,
"visual_anomaly_mean": 4.12,
"visual_anomaly_grid": [
{
"value": 0.955,
"x": 24,
"y": 40,
"width": 8,
"height": 16
}
]
}
}
}
3. Error Response
When errors occur:
ErrorResponse (Model -> Runner):
{
"success": false,
"error": "Error message",
"id": 2
}
Ingestion
The ingestion module allows you to upload data to Edge Impulse using the Edge Impulse Ingestion API.
Installation
Add this to your Cargo.toml
:
edge-impulse-runner = "1.0.0"
Quick Start
Inference
use edge_impulse_runner::EimModel;
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Create a new model instance
let mut model = EimModel::new("path/to/model.eim")?;
// Get model information
let params = model.parameters()?;
println!("Model type: {}", params.model_type);
// Check sensor type
match model.sensor_type()? {
SensorType::Camera => println!("Camera model"),
SensorType::Microphone => println!("Audio model"),
SensorType::Accelerometer => println!("Motion model"),
SensorType::Positional => println!("Position model"),
SensorType::Other => println!("Other sensor type"),
}
// Run inference with normalized features
let raw_features = vec![128, 128, 128]; // Example raw values
let features: Vec<f32> = raw_features.into_iter().map(|x| x as f32 / 255.0).collect();
let result = model.infer(features, None)?;
// Handle the results based on model type
match result.result {
InferenceResult::Classification { classification } => {
for (label, probability) in classification {
println!("{}: {:.2}", label, probability);
}
}
InferenceResult::ObjectDetection { bounding_boxes, classification } => {
for bbox in bounding_boxes {
println!("Found {} at ({}, {}) with confidence {:.2}",
bbox.label, bbox.x, bbox.y, bbox.value);
}
if !classification.is_empty() {
println!("\nOverall classification:");
for (label, prob) in classification {
println!("{}: {:.2}", label, prob);
}
}
}
InferenceResult::VisualAnomaly { visual_anomaly_grid, visual_anomaly_max, visual_anomaly_mean, anomaly } => {
// Normalize the anomaly scores
let (normalized_anomaly, normalized_max, normalized_mean, normalized_regions) =
model.normalize_visual_anomaly(
anomaly,
visual_anomaly_max,
visual_anomaly_mean,
&visual_anomaly_grid.iter()
.map(|bbox| (bbox.value, bbox.x as u32, bbox.y as u32, bbox.width as u32, bbox.height as u32))
.collect::<Vec<_>>()
);
println!("Anomaly score: {:.2}%", normalized_anomaly * 100.0);
println!("Maximum score: {:.2}%", normalized_max * 100.0);
println!("Mean score: {:.2}%", normalized_mean * 100.0);
// Print detected regions
for (value, x, y, w, h) in normalized_regions {
println!("Region: score={:.2}%, x={}, y={}, width={}, height={}",
value * 100.0, x, y, w, h);
}
}
}
Ok(())
}
Ingestion
use edge_impulse_runner::ingestion::{Category, Ingestion, UploadOptions};
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
// Create client with your API key
let ingestion = Ingestion::new("your-api-key").with_debug(); // Optional: enable debug output
// Upload a file (image, audio, video, etc.)
let result = ingestion
.upload_file(
"path/to/file.jpg",
Category::Training,
Some("label".to_string()),
Some(UploadOptions {
disallow_duplicates: true,
add_date_id: true,
}),
)
.await?;
println!("Upload successful: {}", result);
Ok(())
}
Examples
All examples are located in the examples
directory and accept a --debug
flag to enable debug output.
These examples have only been tested on MacOS.
Basic Classification
The simplest example allows you to run inference by providing the features array via command line:
# Format: comma-separated feature values
cargo run --example basic_infer -- --model path/to/model.eim --features "0.1,0.2,0.3"
The features array format depends on your model:
- For audio models: Raw audio samples
- For image models: RGB pixel values
- For accelerometer: X, Y, Z values
- For other sensors: Check your model's specifications
Audio Classification
The repository includes an example that demonstrates audio classification using Edge Impulse models.
To run the audio classification example:
cargo run --example audio_infer -- --model <path_to_model.eim> --audio <path_to_audio.wav> [--debug]
Example output:
Audio file specs: WavSpec { channels: 1, sample_rate: 16000, bits_per_sample: 16, sample_format: Int }
Read 16000 samples from audio file
Model expects 16000 samples
Using 16000 samples for classification
INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
Classification result: InferenceResponse { success: true, id: 2, result: Classification { classification: {"noise": 0.96875, "no": 0.015625, "yes": 0.01953125} } }
Inference on Images
The repository includes an example that demonstrates inference on images using Edge Impulse models:
To run the image inference example:
cargo run --example image_infer -- --model path/to/model.eim --image path/to/image.jpg
Example output on a object detection model:
Detected objects:
----------------
- mug (90.62%): x=24, y=40, width=8, height=16
Video inference
The repository includes an example that demonstrates inference on video using Edge Impulse models:
To run the video example:
cargo run --example video_infer -- --model path/to/model.eim
Example output for an object detection model:
Model Parameters:
----------------
ModelParameters {
axis_count: 1,
frequency: 0.0,
has_anomaly: 0,
image_channel_count: 3,
image_input_frames: 1,
image_input_height: 96,
image_input_width: 96,
image_resize_mode: "fit-shortest",
inferencing_engine: 4,
input_features_count: 9216,
interval_ms: 1.0,
label_count: 1,
labels: [
"mug",
],
model_type: "constrained_object_detection",
sensor: 3,
slice_size: 2304,
threshold: 0.5,
use_continuous_mode: false,
}
----------------
Model expects 96x96 input with 3 channels (9216 features)
Image format will be 96x96 with 3 channels
Setting up pipeline for 96x96 input with 3 channels
INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
No objects detected
Detected objects: [BoundingBox { label: "mug", value: 0.53125, x: 56, y: 48, width: 8, height: 8 }]
Detected objects: [BoundingBox { label: "mug", value: 0.53125, x: 56, y: 40, width: 8, height: 8 }]
Detected objects: [BoundingBox { label: "mug", value: 0.53125, x: 48, y: 40, width: 8, height: 8 }]
Detected objects: [BoundingBox { label: "mug", value: 0.53125, x: 56, y: 40, width: 8, height: 8 }]
Detected objects: [BoundingBox { label: "mug", value: 0.5625, x: 48, y: 40, width: 8, height: 8 }]
Upload Image
cargo run --example upload_image -- \
-a "ei_..." \
-c "training" \
-f ~/Downloads/mug.5jn81s9p.jpg \
--debug
Development
Running Tests
cargo test
Error Handling
The crate provides detailed error types through EimError
:
FileError
: Issues with accessing the EIM fileInvalidPath
: Invalid file path or extensionExecutionError
: Problems running the EIM modelSocketError
: Unix socket communication issuesJsonError
: JSON serialization/deserialization errorsInvalidInput
: Invalid input features or parametersInvalidOperation
: Operation not supported by the model (e.g., continuous mode)
Example error handling:
use edge_impulse_runner::{EimModel, EimError};
fn main() {
match EimModel::new("path/to/model.eim") {
Ok(mut model) => {
match model.infer(vec![0.1, 0.2, 0.3], None) {
Ok(result) => println!("Classification successful"),
Err(EimError::InvalidInput(msg)) => println!("Invalid input: {}", msg),
Err(EimError::ExecutionError(msg)) => println!("Model execution failed: {}", msg),
Err(e) => println!("Other error: {}", e),
}
},
Err(EimError::FileError(e)) => println!("File error: {}", e),
Err(e) => println!("Error creating model: {}", e),
}
}
Development Setup
Prerequisites
1. Install Rust
Install Rust using rustup (recommended method):
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
Follow the on-screen instructions and restart your terminal. Verify the installation with:
rustc --version
cargo --version
2. GStreamer (Optional)
GStreamer is only required if you want to run the video-related examples (like video_infer
). It is not needed for developing the library or running other examples.
If you want to run the video examples:
macOS
Download and install both packages:
Ubuntu/Debian
sudo apt-get update
sudo apt-get install -y \
libgstreamer1.0-dev \
libgstreamer-plugins-base1.0-dev \
libgstreamer-plugins-bad1.0-dev \
gstreamer1.0-plugins-base \
gstreamer1.0-plugins-good \
gstreamer1.0-plugins-bad \
gstreamer1.0-plugins-ugly \
gstreamer1.0-libav \
gstreamer1.0-tools
Other Linux Distributions
For other Linux distributions, please refer to the official GStreamer installation instructions.
Note: Windows support is currently untested.
Verifying GStreamer Installation
If you installed GStreamer, you can verify your installation by running:
gst-launch-1.0 --version
If you see version information, GStreamer is correctly installed.
Acknowledgments
This crate is designed to work with Edge Impulse's machine learning models. For more information about Edge Impulse and their ML deployment solutions, visit Edge Impulse.
License
This project is licensed under the BSD 3-Clause Clear License - see the LICENSE file for details.
Dependencies
~5–17MB
~228K SLoC