14 releases

0.22.3 Mar 17, 2025
0.22.2 Nov 6, 2024
0.22.0 Jul 15, 2024
0.20.0 Jun 14, 2023
0.3.0 Feb 14, 2022

#1883 in Text processing

Download history 144/week @ 2024-12-01 37/week @ 2024-12-08 31/week @ 2024-12-15 36/week @ 2024-12-22 33/week @ 2024-12-29 33/week @ 2025-01-05 23/week @ 2025-01-12 81/week @ 2025-01-19 100/week @ 2025-01-26 19/week @ 2025-02-02 28/week @ 2025-02-09 14/week @ 2025-02-16 34/week @ 2025-02-23 36/week @ 2025-03-02 1/week @ 2025-03-09 126/week @ 2025-03-16

201 downloads per month

MIT/Apache

315KB
7.5K SLoC

vaporetto_tantivy

Vaporetto is a fast and lightweight pointwise prediction based tokenizer. vaporetto_tantivy is a crate to use Vaporetto in Tantivy.

Example

use std::fs::File;
use std::io::{Read, BufReader};

use tantivy::schema::{IndexRecordOption, Schema, TextFieldIndexing, TextOptions};
use tantivy::Index;
use vaporetto::Model;
use vaporetto_tantivy::VaporettoTokenizer;

let mut schema_builder = Schema::builder();
let text_field_indexing = TextFieldIndexing::default()
    .set_tokenizer("ja_vaporetto")
    .set_index_option(IndexRecordOption::WithFreqsAndPositions);
let text_options = TextOptions::default()
    .set_indexing_options(text_field_indexing)
    .set_stored();
schema_builder.add_text_field("title", text_options);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);

// Loads a model with decompression.
let mut f = BufReader::new(File::open("bccwj-suw+unidic.model.zst").unwrap());
let mut decoder = ruzstd::StreamingDecoder::new(&mut f).unwrap();
let mut buff = vec![];
decoder.read_to_end(&mut buff).unwrap();
let model = Model::read(&mut buff.as_slice()).unwrap();

// Creates VaporettoTokenizer with wsconst=DGR.
let tokenizer = VaporettoTokenizer::new(model, "DGR").unwrap();
index
    .tokenizers()
    .register("ja_vaporetto", tokenizer);

Dependencies

~26MB
~432K SLoC