4 stable releases
2.0.0 | Jun 2, 2022 |
---|---|
1.0.3 | May 20, 2022 |
1.0.2 | May 18, 2022 |
1.0.1 | May 17, 2022 |
#1067 in Programming languages
19KB
397 lines
Simple, ready-to-use typed realization of SmallF*ck esoteric language. Highly inspired by this article.
use typed_sf::*;
type SetTrue<Next = EOF> = Cycle<Flip, Flip<Next>>;
// [*<<[*]*>>>] // Move any-sized chunk of True's 2 cells left
#[allow(non_camel_case_types)]
type prog = Cycle<Flip<Left<Left<SetTrue<Right<Right<Right>>>>>>>;
#[allow(non_camel_case_types)]
type result = Run<
prog,
State<Nil, True, Cons<True, Nil>>
>;
assert_eq!(
<result as StateTrait>::val(),
(vec![true, true, false, false], false, Vec::new())
);
Links:
Github repo: https://github.com/Zote-the-Mighty-4o2/typed-sf.rs
Documentation: https://docs.rs/typed-sf/
lib.rs
:
Type-level implementation of SF. Proving that type-system turing-complete. Highly inspired by this article.
Features
typed-sf
supports "no_std" feature with limitations. Runtime
representation of List
's and [State
][StateTrait]'s unavailable
(they are using [Vec
] to represent themselves).
Full list of unsupported features:
- [
List::val()
] (That includes [Nil
] andCons
). RuntimeState
.- [
StateTrait::val()
] (That includesState
andDefaultState
).
Also where is "require_docs" feature which forbids undocumented pub
items.
If You want to contrubute, feel free to turn off this default feature.
How it works
First, there's some traits that i'm calling type-level enums ([Bit
], List
).
Have a look at it:
enum Bit {
True,
False
}
impl Bit {
fn neg(self) -> Bit {
match self {
Bit::True => Bit::False,
Bit::False => Bit::True
}
}
}
assert_eq!(Bit::True, Bit::False.neg());
assert_eq!(Bit::False, Bit::True.neg());
trait Bit {
type Neg: Bit;
fn real() -> bool;
}
struct True;
struct False;
impl Bit for True {
type Neg = False;
fn real() -> bool { true }
}
impl Bit for False {
type Neg = True;
fn real() -> bool { false }
}
assert_eq!(True::real(), <False as Bit>::Neg::real());
assert_eq!(False::real(), <True as Bit>::Neg::real());
Of course, what's more bolierplate, but also instead of matching in runtime, compiler solves type-equasions in compile-time for us.
To type-encode functions i'm using something like this:
#
// A and B are arguments to 'function'.
trait Call<A, B> { type Return; }
struct Sum;
struct Diff;
impl<A, B> Call<A, B> for Sum
where
A: Add<B>
{
type Return = <A as Add<B>>::Output;
}
impl<A, B> Call<A, B> for Diff
where
A: Sub<B>
{
type Return = <A as Sub<B>>::Output;
}
type Apply<A, Fn, B> = <Fn as Call<A, B>>::Return;
What we can use later as:
#
struct X;
struct Y;
struct XaddY;
struct XsubY;
impl Add<Y> for X {
type Output = XaddY;
}
impl Sub<Y> for X {
type Output = XsubY;
}
/* Add `::val() -> Self` function to all types...