1 unstable release
0.1.0 | Aug 1, 2023 |
---|
#612 in Machine learning
360KB
565 lines
[WIP] Snail NN - smol neural network library
fully functional neural network libary with backpropagation and parallelized stochastic gradient descent implementation.
Examples
Storing images inside the neural network, upscaling and interpolate between them.
cargo run --example imagepol --release
The mandatory xor example
cargo run --example xor --release
Example Code:
use snail_nn::prelude::*;
fn main(){
let mut nn = Model::new(&[2, 3, 1]);
nn.set_activation(Activation::Sigmoid)
let mut batch = TrainingBatch::empty(2, 1);
let rate = 1.0;
// AND - training data
batch.add(&[0.0, 0.0], &[0.0]);
batch.add(&[1.0, 0.0], &[0.0]);
batch.add(&[0.0, 1.0], &[0.0]);
batch.add(&[1.0, 1.0], &[1.0]);
for _ in 0..10000 {
let (w_gradient, b_gradient) = nn.gradient(&batch.random_chunk(2));
nn.learn(w_gradient, b_gradient, rate);
}
println!("ouput {:?} expected: 0.0", nn.forward(&[0.0, 0.0]));
println!("ouput {:?} expected: 0.0", nn.forward(&[1.0, 0.0]));
println!("ouput {:?} expected: 0.0", nn.forward(&[0.0, 1.0]));
println!("ouput {:?} expected: 1.0", nn.forward(&[1.0, 1.0]));
}
Features
- Sigmoid, Tanh & Relu activation functions
- Parallelized stochastic gradient descent
- It works on my machine ¯\(ツ)/¯
- Will gobble up most of your cpu
Todo
- more examples
- better documentation
- compute shaders with wgpu
Dependencies
~1.5MB
~30K SLoC