#autograd #engine #tiny #neural #amount #friendly #implemented

rustygrad

A tiny autograd engine inspired by micrograd

2 releases

0.1.1 Mar 15, 2023
0.1.0 Mar 7, 2023

#716 in Machine learning

MIT license

2MB
280 lines

rustygrad

Inspired by Andrej Karpathy's micrograd. This repo implements a tiny Autograd engine in Rust:

  1. with a friendly API
  2. an easy-to-understand implementation
  3. in a minimal amount of code

The engine and the neural net are implemented in about 150 and 100 lines of code respectively (vs Andrej's 100 and 50)! About twice as long, but twice as fast!

Example usage

Value API

Value can be used to construct arbitrary DAG Neural Nets (directed acyclic graph). One way to think about it, is it can be used to model common mathematical expressions. For example,

$$ g = [(a + b) * (c + d)] ^ 2 $$

can be translated into a neural net as such:

use rustygrad::Value;

fn main() {
    let a = Value::from(1.0);
    let b = Value::from(2.0);
    let c = Value::from(3.0);
    let d = Value::from(4.0);

    let g = ((&a + &b) * (&c + &d)).pow(2.0);
    g.backwards();  // compute gradients
}

Below is more complicated example (from micrograd) designed to show most of the supported Value operations // and their Python micrograd version

fn main() {
    // a = Value(-4.0)
    // b = Value(2.0)
    let a = Value::from(-4.0);
    let b = Value::from(2.0);

    // c = a + b
    // d = a * b + b**3
    let mut c = &a + &b;
    let mut d = &a * &b + &b.pow(3.0);

    // c += c + 1
    // c += 1 + c + (-a)
    // d += d * 2 + (b + a).relu()
    // d += 3 * d + (b - a).relu()
    c += &c + 1.0;
    c += 1.0 + &c + (-&a);
    d += &d * 2.0 + (&b + &a).relu();
    d += 3.0 * &d + (&b - &a).relu();

    // e = c - d
    // f = e**2
    // g = f / 2.0
    // g += 10.0 / f
    let e = &c - &d;
    let f = e.pow(2.0);
    let mut g = &f / 2.0;
    g += 10.0 / &f;

    // print(f'{g.data:.4f}') # prints 24.7041, the outcome of this forward pass
    println!("{:.4}", g.borrow().data); // 24.7041

    // g.backward()
    // print(f'{a.grad:.4f}') # prints 138.8338, i.e. the numerical value of dg/da
    // print(f'{b.grad:.4f}') # prints 645.5773, i.e. the numerical value of dg/db
    g.backward();
    println!("{:.4}", a.borrow().grad); // 138.8338
    println!("{:.4}", b.borrow().grad); // 645.5773
}
cargo run --example engine
Neuron and MLP API

The library also exposes a Neuron and Multilayer Perceptron MLP

use rustygrad::{Neuron, MLP};

fn main() {
    // Create a Neuron 
    //  With input size of 2
    //  With ReLu layer (true)
    let neuron = Neuron::new(2, true);

    // Output node
    let g = &neuron.forward(&vec![Value::from(7.0)]);


    // Create a 2x2x1 MLP net:
    //  Input  layer of size 2
    //  Hidden layer of size 2
    //  Ouput  layer of size 1
    let model = MLP::new(2, vec![2, 1]);

    // Some input vector of size 2
    let x = vec![Value::from(7.0), Value::from(8.0)];
    // Output Value node
    let g = &model.forward(x)[0];
}
cargo run --example graphviz

Neuron:

MLP:

Training a neural net

The file mlp.rs trains a MLP binary classifier (with 2 16-node hidden layers) on a toy make_moons.csv dataset. Since plots in rust are hard, for now, here is an ascii representation of the learned solution space:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . * * * * * . . . . . . . . . . . . . . . . * 
. . . . . . . . . . . . . . . . . * * * * * * * . . . . . . . . . . . . . . * * 
. . . . . . . . . . . . . . . . . * * * * * * * * . . . . . . . . . . . . * * * 
. . . . . . . . . . . . . . . . . * * * * * * * * * . . . . . . . . . . * * * * 
. . . . . . . . . . . . . . . . . * * * * * * * * * * . . . . . . . . . * * * * 
. . . . . . . . . . . . . . . . * * * * * * * * * * * . . . . . . . . * * * * * 
. . . . . . . . . . . . . . . . * * * * * * * * * * * * . . . . . . * * * * * * 
. . . . . . . . . . . . . . . . * * * * * * * * * * * * * . . . . * * * * * * * 
. . . . . . . . . . . . . . . * * * * * * * * * * * * * * * * * * * * * * * * * 
. . . . . . . . . . . . . . . * * * * * * * * * * * * * * * * * * * * * * * * * 
. . . . . . . . . . . . . . * * * * * * * * * * * * * * * * * * * * * * * * * * 
. . . . . . . . . . . . . . * * * * * * * * * * * * * * * * * * * * * * * * * * 
. . . . . . . . . . . . . . * * * * * * * * * * * * * * * * * * * * * * * * * * 
. . . . . . . . . . . . . * * * * * * * * * * * * * * * * * * * * * * * * * * * 
. . . . . . . . . . . . . * * * * * * * * * * * * * * * * * * * * * * * * * * * 
. . . . . . . . . . . . * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
. . . . . . . . . . . . * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
. . . . . . . . . . . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
. . . . . . . . . . . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
. . . . . . . . . . . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
. . . . . . . . . . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
. . . . . . . . . . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
. . . . . . . . . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
. . . . . . . . . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
. . . . . . . . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
. . . . . . . . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
cargo run --example mlp

Running tests

cargo test

Dependencies