3 stable releases
1.1.0 | Dec 1, 2024 |
---|---|
1.0.1 | Nov 30, 2024 |
1.0.0 | Nov 28, 2024 |
#478 in Machine learning
32 downloads per month
48KB
814 lines
SCRFD - Rust Package for Face Detection
SCRFD is a Rust library for face detection, providing both synchronous and asynchronous support. It utilizes ONNX Runtime for high-performance inference and supports bounding box and keypoint detection.
Features
- Face Detection: Detect bounding boxes and landmarks for faces in images.
- Asynchronous Support: Optional async functionality for non-blocking operations.
- Customizable Parameters:
- Input size
- Confidence threshold
- IoU threshold
- Efficient Processing:
- Anchor-based detection
- Optimized caching for anchor centers
Installation
Add the library to your Cargo.toml
:
[dependencies]
rusty_scrfd = { version = "1.0.0", features = ["async"] } # Enable async feature if needed
To enable synchronous mode only, omit the async
feature:
[dependencies]
rusty_scrfd = "1.0.0"
Usage
Synchronous Example
use rusty_scrfd::SCRFD;
use image::open;
use ort::session::SessionBuilder;
use std::collections::HashMap;
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Load the ONNX model
let model_path = "path/to/scrfd_model.onnx";
let session = SessionBuilder::new().unwrap().with_model_from_file(model_path)?;
// Initialize SCRFD
let mut scrfd = SCRFD::new(session, (640, 640), 0.5, 0.4)?;
// Load an image
let image = open("path/to/image.jpg")?.into_rgb8();
// Center cache to optimize anchor generation
let mut center_cache = HashMap::new();
// Detect faces
let (bboxes, keypoints) = scrfd.detect(&image, 5, "max", &mut center_cache)?;
println!("Bounding boxes: {:?}", bboxes);
if let Some(kps) = keypoints {
println!("Keypoints: {:?}", kps);
}
Ok(())
}
Asynchronous Example
Enable the async
feature in Cargo.toml
:
[dependencies]
rusty_scrfd = { version = "1.0.0", features = ["async"] }
use rusty_scrfd::SCRFDAsync;
use image::open;
use ort::session::SessionBuilder;
use std::collections::HashMap;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
// Load the ONNX model
let model_path = "path/to/scrfd_model.onnx";
let session = SessionBuilder::new().unwrap().with_model_from_file(model_path)?;
// Initialize SCRFDAsync
let scrfd = SCRFDAsync::new((640, 640), 0.5, 0.4, session)?;
// Load an image
let image = open("path/to/image.jpg")?.into_rgb8();
// Center cache to optimize anchor generation
let mut center_cache = HashMap::new();
// Detect faces asynchronously
let (bboxes, keypoints) = scrfd.detect(&image, 5, "max", &mut center_cache).await?;
println!("Bounding boxes: {:?}", bboxes);
if let Some(kps) = keypoints {
println!("Keypoints: {:?}", kps);
}
Ok(())
}
API Documentation
Structs
1. SCRFD
(Synchronous)
-
Constructor:
pub fn new( session: Session, input_size: (i32, i32), conf_thres: f32, iou_thres: f32, ) -> Result<Self, Box<dyn Error>>;
session
: ONNX Runtime session.input_size
: Tuple of input width and height.conf_thres
: Confidence threshold for face detection.iou_thres
: IoU threshold for non-maximum suppression.
-
Methods:
detect
:pub fn detect( &mut self, image: &RgbImage, max_num: usize, metric: &str, center_cache: &mut HashMap<(i32, i32, i32), Array2<f32>>, ) -> Result<(Array2<f32>, Option<Array3<f32>>), Box<dyn Error>>;
- Detect faces in the input image.
- Returns: Detected bounding boxes and optional keypoints.
2. SCRFDAsync
(Asynchronous)
-
Constructor:
pub fn new( input_size: (i32, i32), conf_thres: f32, iou_thres: f32, session: Session, ) -> Result<Self, Box<dyn Error>>;
- Same parameters as
SCRFD
.
- Same parameters as
-
Methods:
detect
:pub async fn detect( &self, image: &RgbImage, max_num: usize, metric: &str, center_cache: &mut HashMap<(i32, i32, i32), Array2<f32>>, ) -> Result<(Array2<f32>, Option<Array3<f32>>), Box<dyn Error>>;
- Asynchronous version of
detect
.
- Asynchronous version of
Helper Functions
Available in ScrfdHelpers
:
generate_anchor_centers
: Efficiently generate anchor centers for feature maps.distance2bbox
: Convert distances to bounding boxes.distance2kps
: Convert distances to keypoints.nms
: Perform non-maximum suppression to filter detections.
Contributing
Contributions are welcome! Please open an issue or submit a pull request for improvements.
Running Tests
- For synchronous features:
cargo test
- For asynchronous features:
cargo test --features async
License
This library is licensed under the MIT License. See the LICENSE file for details.
References
Dependencies
~12–37MB
~515K SLoC