8 releases (5 breaking)
0.7.0 | Jun 1, 2024 |
---|---|
0.6.2 | May 11, 2024 |
0.6.1 | Dec 24, 2022 |
0.6.0 | Aug 24, 2021 |
0.2.0 | May 22, 2019 |
#201 in Rust patterns
11,201 downloads per month
Used in 4 crates
(3 directly)
21KB
79 lines
A framework and a DSL for building finite state machines in Rust
The rust-fsm
crate provides a simple and universal framework for building
state machines in Rust with minimum effort.
The essential part of this crate is the
StateMachineImpl
trait. This trait allows a
developer to provide a strict state machine definition, e.g. specify its:
- An input alphabet - a set of entities that the state machine takes as inputs and performs state transitions based on them.
- Possible states - a set of states this machine could be in.
- An output alphabet - a set of entities that the state machine may output as results of its work.
- A transition function - a function that changes the state of the state machine based on its current state and the provided input.
- An output function - a function that outputs something from the output alphabet based on the current state and the provided inputs.
- The initial state of the machine.
Note that on the implementation level such abstraction allows build any type of state machines:
- A classical state machine by providing only an input alphabet, a set of states and a transition function.
- A Mealy machine by providing all entities listed above.
- A Moore machine by providing an output function that do not depend on the provided inputs.
Feature flags
Default
std
- implement features that require thestd
environment. See below.dsl
- re-exportrust-fsm-dsl
fromrust-fsm
. Recommended to leave this on for the best development experience.
Non-default
diagram
- generate Mermaid state diagrams in the doc strings. See below.
Usage in no_std
environments
This library has the feature named std
which is enabled by default. You
may want to import this library as
rust-fsm = { version = "0.7", default-features = false, features = ["dsl"] }
to use it in a no_std
environment. This only affects error types (the Error
trait is only available in std
).
The DSL implementation re-export is gated by the feature named dsl
which is
also enabled by default.
Use
Initially this library was designed to build an easy to use DSL for defining
state machines on top of it. Using the DSL will require to connect an
additional crate rust-fsm-dsl
(this is due to limitation of the procedural
macros system).
Using the DSL for defining state machines
The DSL is parsed by the state_machine
macro. Here is a little example.
use rust_fsm::*;
state_machine! {
#[derive(Debug)]
#[repr(C)]
/// A Circuit Breaker state machine.
circuit_breaker(Closed)
Closed(Unsuccessful) => Open [SetupTimer],
Open(TimerTriggered) => HalfOpen,
HalfOpen => {
Successful => Closed,
Unsuccessful => Open [SetupTimer]
}
}
This code sample:
- Defines a state machine called
circuit_breaker
; - Derives the
Debug
trait for it. All attributes you use here (like#[repr(C)]
) will be applied to all types generated by this macro. If you want to apply attributes or a docstring to themod
generated by this macro, just put it before the macro invocation. - Sets the initial state of this state machine to
Closed
; - Defines state transitions. For example: on receiving the
Successful
input when in theHalfOpen
state, the machine must move to theClosed
state; - Defines outputs. For example: on receiving
Unsuccessful
in theClosed
state, the machine must outputSetupTimer
.
This state machine can be used as follows:
// Initialize the state machine. The state is `Closed` now.
let mut machine = circuit_breaker::StateMachine::new();
// Consume the `Successful` input. No state transition is performed.
let _ = machine.consume(&circuit_breaker::Input::Successful);
// Consume the `Unsuccesful` input. The machine is moved to the `Open`
// state. The output is `SetupTimer`.
let output = machine.consume(&circuit_breaker::Input::Unsuccessful).unwrap();
// Check the output
if let Some(circuit_breaker::Output::SetupTimer) = output {
// Set up the timer...
}
// Check the state
if let circuit_breaker::State::Open = machine.state() {
// Do something...
}
The following entities are generated:
- An empty structure
circuit_breaker::Impl
that implements theStateMachineImpl
trait. - Enums
circuit_breaker::State
,circuit_breaker::Input
andcircuit_breaker::Output
that represent the state, the input alphabet and the output alphabet respectively. - Type alias
circuit_breaker::StateMachine
that expands toStateMachine<circuit_breaker::Impl>
.
Note that if there is no outputs in the specification, the output alphabet is an
empty enum and due to technical limitations of many Rust attributes, no
attributes (e.g. derive
, repr
) are applied to it.
Within the state_machine
macro you must define at least one state
transition.
Visibility
You can specify visibility like this:
use rust_fsm::*;
state_machine! {
pub CircuitBreaker(Closed)
Closed(Unsuccessful) => Open [SetupTimer],
Open(TimerTriggered) => HalfOpen,
HalfOpen => {
Successful => Closed,
Unsuccessful => Open [SetupTimer],
}
}
The default visibility is private.
Custom alphabet types
You can supply your own types to use as input, output or state. All of them are optional: you can use only one of them or all of them at once if you want to. The current limitation is that you have to supply a fully qualified type path.
use rust_fsm::*;
pub enum Input {
Successful,
Unsuccessful,
TimerTriggered,
}
pub enum State {
Closed,
HalfOpen,
Open,
}
pub enum Output {
SetupTimer,
}
state_machine! {
#[state_machine(input(crate::Input), state(crate::State), output(crate::Output))]
circuit_breaker(Closed)
Closed(Unsuccessful) => Open [SetupTimer],
Open(TimerTriggered) => HalfOpen,
HalfOpen => {
Successful => Closed,
Unsuccessful => Open [SetupTimer]
}
}
Diagrams
state_machine
macro can document your state machines with diagrams. This is
controlled by the diagram
feature, which is non-default. The diagrams are
generated in the Mermaid format. This feature includes the Mermaid
script into the documentation page.
To see this in action, download the repository and run:
cargo doc -p doc-example --open
Without DSL
The state_machine
macro has limited capabilities (for example, a state
cannot carry any additional data), so in certain complex cases a user might
want to write a more complex state machine by hand.
All you need to do to build a state machine is to implement the
StateMachineImpl
trait and use it in conjuctions with some of the provided
wrappers (for now there is only StateMachine
).
You can see an example of the Circuit Breaker state machine in the project repository.
Dependencies
~0–470KB
~11K SLoC