2 releases (1 stable)
1.2.6 | Jan 30, 2023 |
---|
#1953 in Command line utilities
305KB
7K
SLoC
rtx
Polyglot runtime manager (asdf rust clone)
Quickstart
Install rtx (other methods here):
$ https://rtx.jdxcode.com/rtx-latest-macos-arm64 > ~/bin/rtx
$ rtx --version
rtx 1.2.6
Hook rtx into to your shell. This will automatically add ~/bin
to PATH
if it isn't already.
(choose one, and open a new shell session for the changes to take effect):
$ echo 'eval "$(~/bin/rtx activate -s bash)"' >> ~/.bashrc
$ echo 'eval "$(~/bin/rtx activate -s zsh)"' >> ~/.zshrc
$ echo '~/bin/rtx activate -s fish | source' >> ~/.config/fish/config.fish
Warning
If you use direnv, see below for direnv-compatible setup.
Install a runtime and set it as the default:
$ rtx install nodejs@18
$ rtx global nodejs@18
$ node -v
v18.10.9
Note
rtx install
is optional,rtx global
will prompt to install the runtime if it's not already installed. This is configurable in~/.config/rtx/config.toml
.
About
rtx is a tool for managing programming language and tool versions. For example, use this to install
a particular version of node.js and ruby for a project. Using rtx activate
, you can have your
shell automatically switch to the correct node and ruby versions when you cd
into the project's
directory. Other projects on your machine can use a different set of versions.
rtx is inspired by asdf and uses asdf's vast plugin ecosystem under the hood. However, it is much faster than asdf and has a more friendly user experience. For more on how rtx compares to asdf, see below. The goal of this project was to create a better front-end to asdf.
It uses the same .tool-versions
file that asdf uses. It's also compatible with idiomatic version
files like .node-version
and .ruby-version
. See Legacy Version Files below.
Come chat about rtx on discord.
How it works
rtx installs as a shell extension (e.g. rtx activate -s zsh
) that sets the PATH
environment variable to point your shell to the correct runtime binaries. When you cd
into a
directory containing a .tool-versions
file, rtx will automatically activate the correct versions.
Every time your prompt starts it will call rtx hook-env
to fetch new environment variables. This
should be very fast and it exits early if the the directory wasn't changed or the .tool-version
files haven't been updated. On my machine this takes 1-2ms even if it doesn't exit early.
Unlike asdf which uses shim files to dynamically locate runtimes when they're called, rtx modifies
PATH
ahead of time so the runtimes are called directly. This is not only faster since it avoids
any overhead, but it also makes it so commands like which node
work as expected. This also
means there isn't any need to run asdf reshim
after installing new runtime binaries.
Common example commands
rtx install nodejs@20.0.0 Install a specific version number
rtx install nodejs@20.0 Install a fuzzy version number
rtx local nodejs@20 Use node-20.x in current project
rtx global nodejs@20 Use node-20.x as default
rtx install nodejs Install the latest available version
rtx local nodejs@latest Use latest node in current directory
rtx global nodejs@system Use system node as default
rtx x nodejs@20 -- node app.js Run `node app.js` with the PATH pointing to node-20.x
Installation
Warning
Regardless of the installation method, when uninstalling rtx, remove
RTX_DATA_DIR
folder (usually~/.local/share/rtx
) to fully clean up.
Standalone
Note that it isn't necessary for rtx
to be on PATH
. If you run the activate script in your rc
file, rtx will automatically add itself to PATH
.
$ curl https://rtx.jdxcode.com/install.sh | sh
Note
There isn't currently an autoupdater in rtx. So if you use this method you'll need to remember to fetch a new version manually for bug/feature fixes. I'm not sure if I'll ever add an autoupdater because it might be disruptive to autoupdate to a major version that has breaking changes.
or if you're allergic to | sh
:
$ curl https://rtx.jdxcode.com/rtx-latest-macos-arm64 > /usr/local/bin/rtx
It doesn't matter where you put it. So use ~/bin
, /usr/local/bin
, ~/.local/share/rtx/bin/rtx
or whatever.
Supported architectures:
x64
arm64
Supported platforms:
macos
linux
If you need something else, compile it with cargo.
Homebrew
$ brew install jdxcode/tap/rtx
Cargo
Build from source with Cargo.
$ cargo install rtx-cli
Do it faster with cargo-binstall:
$ cargo install cargo-binstall
$ cargo binstall rtx-cli
npm
rtx is available on npm as precompiled binaries. This isn't a node.js package, just distributed
via npm. It can be useful for JS projects that want to setup rtx via package.json
or npx
.
$ npm install -g @jdxcode/rtx
Or use npx if you just want to test it out for a single command without fully installing:
$ npx @jdxcode/rtx exec python@3.11 -- python some_script.py
GitHub Releases
Download the latest release from GitHub.
$ curl https://github.com/jdxcode/rtx/releases/download/v1.2.6/rtx-v1.2.6-linux-x64 | tar -xJv
$ mv rtx/bin/rtx /usr/local/bin
apt
For installation on Ubuntu/Debian:
wget -qO - https://rtx.jdxcode.com/gpg-key.pub | gpg --dearmor | sudo tee /usr/share/keyrings/rtx-archive-keyring.gpg 1> /dev/null
echo "deb [signed-by=/usr/share/keyrings/rtx-archive-keyring.gpg arch=amd64] https://rtx.jdxcode.com/deb stable main" | sudo tee /etc/apt/sources.list.d/rtx.list
sudo apt update
sudo apt install -y rtx
Warning
If you're on arm64 you'll need to run the following:
echo "deb [signed-by=/usr/share/keyrings/rtx-archive-keyring.gpg arch=arm64] https://rtx.jdxcode.com/deb stable main" | sudo tee /etc/apt/sources.list.d/rtx.list
dnf
For Fedora, CentOS, Amazon Linux, RHEL and other dnf-based distributions:
dnf install -y dnf-plugins-core
dnf config-manager --add-repo https://rtx.jdxcode.com/rpm/rtx.repo
dnf install -y rtx
yum
yum install -y yum-utils
yum-config-manager --add-repo https://rtx.jdxcode.com/rpm/rtx.repo
yum install -y rtx
apk (coming soon)
For Alpine Linux:
apk add rtx --repository=http://dl-cdn.alpinelinux.org/alpine/edge/testing/
aur
For Arch Linux:
git clone https://aur.archlinux.org/rtx.git
cd rtx
makepkg -si
Other Shells
Bash
$ echo 'eval "$(rtx activate -s bash)"' >> ~/.bashrc
Fish
$ echo 'rtx activate -s fish | source' >> ~/.config/fish/config.fish
Configuration
.tool-versions
The .tool-versions
file is used to specify the runtime versions for a project. An example of this
is:
nodejs 20.0.0 # comments are allowed
ruby 3 # can be fuzzy version
shellcheck latest # also supports "latest"
jq 1.6
Create .tool-versions
files manually, or use rtx local
to create them automatically.
See the asdf docs for more info on this file format.
Legacy version files
RTX supports "legacy version files" just like asdf.
It's behind a config setting "legacy_version_file", but it's enabled by default (asdf defaults to disabled).
You can disable these with rtx settings set legacy_version_file false
. There is a performance cost
to having these when they're parsed as it's performed by the plugin in bin/parse-version-file
. However
these are cached so it's not a huge deal. You may not even notice.
These are ideal for setting the runtime version of a project without forcing other developers to use a specific tool like rtx/asdf.
They support aliases, which means you can (finally) have an .nvmrc
file with lts/hydrogen
and it will work in rtx and nvm. This wasn't possible with asdf.
Here are some of the supported legacy version files:
Plugin | "Legacy" (Idiomatic) Files |
---|---|
crystal | .crystal-version |
elixir | .exenv-version |
golang | .go-version , go.mod |
java | .java-version |
nodejs | .nvmrc , .node-version |
python | .python-version |
ruby | .ruby-version , Gemfile |
terraform | .terraform-version , .packer-version , main.tf |
yarn | .yvmrc |
Note
asdf calls these "legacy version files" so we do too. I think this is a bad name since it implies that they shouldn't be used—which is definitely not the case IMO. I prefer the term "idiomatic" version files since they're version files not specific to asdf/rtx and can be used by other tools. (
.npmrc
being a notable exception, which is tied to a specific tool.)
Global config: ~/.config/rtx/config.toml
rtx can be configured in ~/.config/rtx/config.toml
. The following options are available (defaults shown):
# whether to prompt to install plugins and runtimes if they're not already installed
missing_runtime_behavior = 'prompt' # other options: 'ignore', 'warn', 'prompt', 'autoinstall'
# plugins can read the versions files used by other version managers (if enabled by the plugin)
# for example, .nvmrc in the case of nodejs's nvm
legacy_version_file = true # enabled by default (different than asdf)
# configure `rtx install` to always keep the downloaded archive
always_keep_download = false # deleted after install by default
# configure how frequently (in minutes) to fetch updated plugin repository changes
# this is updated whenever a new runtime is installed
plugin_autoupdate_last_check_duration = 10080 # (one week) set to 0 to disable updates
# configure how frequently (in minutes) to fetch updated shortname repository changes
# note this is not plugins themselves, it's the shortname mappings
# e.g.: nodejs -> https://github.com/asdf-vm/asdf-nodejs.git
plugin_repository_last_check_duration = 10080 # (one week) set to 0 to disable updates
# disables the short name repository (described above)
disable_plugin_short_name_repository = false
[alias.nodejs]
my_custom_node = '18' # makes `rtx install nodejs@my_custom_node` install node-18.x
# this can also be specified in a plugin (see below in "Aliases")
These settings can also be managed with rtx settings ls|get|set|unset
.
Environment variables
rtx can also be configured via environment variables. The following options are available:
RTX_MISSING_RUNTIME_BEHAVIOR
This is the same as the missing_runtime_behavior
config option in ~/.config/rtx/config.toml
.
RTX_DATA_DIR
This is the directory where rtx stores its data. The default is ~/.local/share/rtx
.
$ RTX_MISSING_RUNTIME_BEHAVIOR=ignore rtx install nodejs@20
$ RTX_NODEJS_VERSION=20 rtx exec -- node --version
RTX_CONFIG_FILE
This is the path to the config file. The default is ~/.config/rtx/config.toml
.
(Or $XDG_CONFIG_HOME/config.toml
if that is set)
RTX_DEFAULT_TOOL_VERSIONS_FILENAME
Set to something other than ".tool-versions" to have rtx look for configuration with alternate names.
RTX_${PLUGIN}_VERSION
Set the version for a runtime. For example, RTX_NODEJS_VERSION=20
will use nodejs@20.x regardless
of what is set in .tool-versions
.
RTX_LEGACY_VERSION_FILE
Plugins can read the versions files used by other version managers (if enabled by the plugin) for example, .nvmrc in the case of nodejs's nvm.
Aliases
rtx supports aliasing the versions of runtimes. One use-case for this is to define aliases for LTS
versions of runtimes. For example, you may want to specify lts/hydrogen
as the version for nodejs@18.x.
So you can use the runtime with nodejs lts/hydrogen
in .tool-versions
.
User aliases can be created by adding an alias.<PLUGIN>
section to ~/.config/rtx/config.toml
:
[alias.nodejs]
my_custom_18 = '18'
Plugins can also provide aliases via a bin/list-aliases
script. Here is an example showing node.js
versions:
#!/usr/bin/env bash
echo "lts/hydrogen 18"
echo "lts/gallium 16"
echo "lts/fermium 14"
Note:
Because this is rtx-specific functionality not currently used by asdf it isn't likely to be in any plugin currently, but plugin authors can add this script without impacting asdf users.
Plugins
rtx uses asdf's plugin ecosystem under the hood. See https://github.com/asdf-vm/asdf-plugins for a list.
FAQs
I don't want to put a .tool-versions
file into my project since git shows it as an untracked file.
You can make git ignore these files in 3 different ways:
- Adding
.tool-versions
to project's.gitignore
file. This has the downside that you need to commit the change to the ignore file. - Adding
.tool-versions
to project's.git/info/exclude
. This file is local to your project so there is no need to commit it. - Adding
.tool-versions
to global gitignore (core.excludesFile
). This will cause git to ignore.tool-versions
files in all projects. You can explicitly add one to a project if needed withgit add --force .tool-versions
.
How do I create my own plugin?
Just follow the asdf docs. Everything should work the same. If it isn't, please open an issue.
rtx is failing or not working right
First try setting RTX_LOG_LEVEL=debug
or RTX_LOG_LEVEL=trace
and see if that gives you more information.
You can also set RTX_LOG_FILE=/path/to/logfile
to write the logs to a file.
If something is happening with the activate hook, you can try disabling it and calling eval "$(rtx hook-env)"
manually.
It can also be helpful to use rtx env
to see what environment variables it wants to use.
Lastly, there is an rtx doctor
command. It doesn't have much in it but I hope to add more functionality
to that to help debug issues.
Windows support?
This is unlikely to ever happen since this leverages the vast ecosystem of asdf plugins which are built on Bash scripts. At some point it may be worth exploring an alternate plugin format that would be Windows compatible.
Commands
rtx activate
Enables rtx to automatically modify runtimes when changing directory
This should go into your shell's rc file.
Otherwise, it will only take effect in the current session.
(e.g. ~/.bashrc)
Usage: activate [OPTIONS]
Options:
-s, --shell <SHELL>
Shell type to generate the script for
[possible values: bash, fish, zsh]
-h, --help
Print help (see a summary with '-h')
Examples:
$ eval "$(rtx activate -s bash)"
$ eval "$(rtx activate -s zsh)"
$ rtx activate -s fish | source
rtx alias ls
List aliases
Shows the aliases that can be specified.
These can come from user config or from plugins in `bin/list-aliases`.
For user config, aliases are defined like the following in `~/.config/rtx/config.toml`:
[alias.nodejs]
lts = "18.0.0"
Usage: ls [OPTIONS]
Options:
-p, --plugin <PLUGIN>
Show aliases for <PLUGIN>
-h, --help
Print help (see a summary with '-h')
Examples:
$ rtx aliases
nodejs lts/hydrogen 18.0.0
rtx complete
generate shell completions
Usage: complete --shell <SHELL>
Options:
-s, --shell <SHELL>
shell type
[possible values: bash, elvish, fish, powershell, zsh]
-h, --help
Print help (see a summary with '-h')
Examples:
$ rtx complete
rtx current
Shows currently active, and installed runtime versions
This is similar to `rtx list --current`, but this
only shows the runtime and/or version so it's
designed to fit into scripts more easily.
Usage: current [PLUGIN]
Arguments:
[PLUGIN]
plugin to show versions of
e.g.: ruby, nodejs
Options:
-h, --help
Print help (see a summary with '-h')
Examples:
$ rtx current
shfmt@3.6.0
shellcheck@0.9.0
nodejs@18.13.0
$ rtx current nodejs
18.13.0
rtx deactivate
disable rtx for current shell session
This can be used to temporarily disable rtx in a shell session.
Usage: deactivate [OPTIONS]
Options:
-s, --shell <SHELL>
shell type to generate the script for
e.g.: bash, zsh, fish
[possible values: bash, fish, zsh]
-h, --help
Print help (see a summary with '-h')
Examples:
$ eval "$(rtx deactivate -s bash)"
$ eval "$(rtx deactivate -s zsh)"
$ rtx deactivate -s fish | source
rtx direnv activate
Output direnv function to use rtx inside direnv
See https://github.com/jdxcode/rtx#direnv for more information
Because this generates the legacy files based on currently installed plugins,
you should run this command after installing new plugins. Otherwise
direnv may not know to update environment variables when legacy file versions change.
Usage: activate
Options:
-h, --help
Print help (see a summary with '-h')
Examples:
$ rtx direnv activate > ~/.config/direnv/lib/use_rtx.sh
$ echo 'use rtx' > .envrc
$ direnv allow
rtx doctor
Check rtx installation for possible problems.
Usage: doctor
Options:
-h, --help
Print help (see a summary with '-h')
Examples:
$ rtx doctor
[WARN] plugin nodejs is not installed
rtx env
exports environment variables to activate rtx in a single shell session
It's not necessary to use this if you have `rtx activate` in your shell rc file.
Use this if you don't want to permanently install rtx.
This can be used similarly to `asdf shell`.
Unfortunately, it requires `eval` to work since it's not written in Bash though.
It's also useful just to see what environment variables rtx sets.
Usage: env [OPTIONS] [RUNTIME]...
Arguments:
[RUNTIME]...
runtime version to use
Options:
-s, --shell <SHELL>
Shell type to generate environment variables for
[possible values: bash, fish, zsh]
-h, --help
Print help (see a summary with '-h')
Examples:
$ eval "$(rtx env -s bash)"
$ eval "$(rtx env -s zsh)"
$ rtx env -s fish | source
rtx exec
execute a command with runtime(s) set
use this to avoid modifying the shell session or running ad-hoc commands with the rtx runtimes
set.
Runtimes will be loaded from .tool-versions, though they can be overridden with <RUNTIME> args
Note that only the plugin specified will be overriden, so if a `.tool-versions` file
includes "nodejs 20" but you run `rtx exec python@3.11`; it will still load nodejs@20.
The "--" separates runtimes from the commands to pass along to the subprocess.
Usage: exec [OPTIONS] [RUNTIME]... [-- <COMMAND>...]
Arguments:
[RUNTIME]...
runtime(s) to start
e.g.: nodejs@20 python@3.10
[COMMAND]...
the command string to execute (same as --command)
Options:
-c, --command <C>
the command string to execute
-h, --help
Print help (see a summary with '-h')
Examples:
rtx exec nodejs@20 -- node ./app.js # launch app.js using node-20.x
rtx x nodejs@20 -- node ./app.js # shorter alias
Specify command as a string:
rtx exec nodejs@20 python@3.11 --command "node -v && python -V"
rtx global
sets global .tool-versions to include a specified runtime
this file is `$HOME/.tool-versions` by default
use `rtx local` to set a runtime version locally in the current directory
Usage: global [OPTIONS] [RUNTIME]...
Arguments:
[RUNTIME]...
runtimes
e.g.: nodejs@20
Options:
--fuzzy
save fuzzy match to .tool-versions e.g.: `rtx global --fuzzy nodejs@20` will save `nodejs 20` to .tool-versions, by default, it would save the exact version, e.g.: `nodejs 20.0.0`
--remove <PLUGIN>
remove the plugin(s) from ~/.tool-versions
-h, --help
Print help (see a summary with '-h')
Examples:
# set the current version of nodejs to 20.x
# will use a precise version (e.g.: 20.0.0) in .tool-versions file
$ rtx global nodejs@20
# set the current version of nodejs to 20.x
# will use a fuzzy version (e.g.: 20) in .tool-versions file
$ rtx global --fuzzy nodejs@20
rtx install
install a runtime
this will install a runtime to `~/.local/share/rtx/installs/<PLUGIN>/<VERSION>`
it won't be used simply by being installed, however.
For that, you must set up a `.tool-version` file manually or with `rtx local/global`.
Or you can call a runtime explicitly with `rtx exec <PLUGIN>@<VERSION> -- <COMMAND>`.
Usage: install [OPTIONS] [RUNTIME]...
Arguments:
[RUNTIME]...
runtime(s) to install
e.g.: nodejs@20
Options:
-p, --plugin <PLUGIN>
only install runtime(s) for <PLUGIN>
-f, --force
force reinstall even if already installed
-h, --help
Print help (see a summary with '-h')
Examples:
$ rtx install nodejs@18.0.0 # install specific nodejs version
$ rtx install nodejs@18 # install fuzzy nodejs version
$ rtx install nodejs # install latest nodejs version—or what is specified in .tool-versions
$ rtx install # installs all runtimes specified in .tool-versions for installed plugins
rtx latest
get the latest runtime version of a plugin's runtimes
Usage: latest <RUNTIME>
Arguments:
<RUNTIME>
Runtime to get the latest version of
Options:
-h, --help
Print help (see a summary with '-h')
Examples:
$ rtx latest nodejs@18 # get the latest version of nodejs 18
18.0.0
$ rtx latest nodejs # get the latest stable version of nodejs
20.0.0
rtx local
Sets .tool-versions to include a specific runtime
use this to set the runtime version when within a directory
use `rtx global` to set a runtime version globally
Usage: local [OPTIONS] [RUNTIME]...
Arguments:
[RUNTIME]...
runtimes to add to .tool-versions
e.g.: nodejs@20
Options:
-p, --parent
recurse up to find a .tool-versions file rather than using the current directory only by default this command will only set the runtime in the current directory ("$PWD/.tool-versions")
--fuzzy
save fuzzy match to .tool-versions e.g.: `rtx local --fuzzy nodejs@20` will save `nodejs 20` to .tool-versions by default it would save the exact version, e.g.: `nodejs 20.0.0`
--remove <PLUGIN>
remove the plugin(s) from .tool-versions
-h, --help
Print help (see a summary with '-h')
Examples:
# set the current version of nodejs to 20.x for the current directory
# will use a precise version (e.g.: 20.0.0) in .tool-versions file
$ rtx local nodejs@20
# set nodejs to 20.x for the current project (recurses up to find .tool-versions)
$ rtx local -p nodejs@20
# set the current version of nodejs to 20.x for the current directory
# will use a fuzzy version (e.g.: 20) in .tool-versions file
$ rtx local --fuzzy nodejs@20
# removes nodejs from .tool-versions
$ rtx local --remove=nodejs
rtx ls
list installed runtime versions
The "arrow (->)" indicates the runtime is installed, active, and will be used for running commands.
(Assuming `rtx activate` or `rtx env` is in use).
Usage: ls [OPTIONS]
Options:
-p, --plugin <PLUGIN>
Only show runtimes from [PLUGIN]
-c, --current
Only show runtimes currently specified in .tool-versions
-h, --help
Print help (see a summary with '-h')
Examples:
$ rtx list
-> nodejs 20.0.0 (set by ~/src/myapp/.tool-versions)
-> python 3.11.0 (set by ~/.tool-versions)
python 3.10.0
$ rtx list --current
-> nodejs 20.0.0 (set by ~/src/myapp/.tool-versions)
-> python 3.11.0 (set by ~/.tool-versions)
rtx ls-remote
list runtime versions available for install
note that these versions are cached for commands like `rtx install nodejs@latest`
however _this_ command will always clear that cache and fetch the latest remote versions
Usage: ls-remote <PLUGIN>
Arguments:
<PLUGIN>
Plugin
Options:
-h, --help
Print help (see a summary with '-h')
Examples:
$ rtx list-remote nodejs
18.0.0
20.0.0
rtx plugins install
install a plugin
note that rtx automatically can install plugins when you install a runtime
e.g.: `rtx install nodejs@18` will autoinstall the nodejs plugin
This behavior can be modified in ~/.rtx/config.toml
Usage: install [OPTIONS] <NAME> [GIT_URL]
Arguments:
<NAME>
The name of the plugin to install
e.g.: nodejs, ruby
[GIT_URL]
The git url of the plugin
e.g.: https://github.com/asdf-vm/asdf-nodejs.git
Options:
-f, --force
Reinstalls even if plugin exists
-h, --help
Print help (see a summary with '-h')
EXAMPLES:
$ rtx install nodejs # install the nodejs plugin using the shorthand repo:
# https://github.com/asdf-vm/asdf-plugins
$ rtx install nodejs https://github.com/asdf-vm/asdf-nodejs.git
# install the nodejs plugin using the git url
$ rtx install https://github.com/asdf-vm/asdf-nodejs.git
# install the nodejs plugin using the git url only
# (nodejs is inferred from the url)
rtx plugins ls
List installed plugins
Can also show remotely available plugins to install.
Usage: ls [OPTIONS]
Options:
-a, --all
list all available remote plugins
same as `rtx plugins ls-remote`
-u, --urls
show the git url for each plugin
e.g.: https://github.com/asdf-vm/asdf-nodejs.git
-h, --help
Print help (see a summary with '-h')
List installed plugins
Can also show remotely available plugins to install.
Examples:
$ rtx plugins ls
nodejs
ruby
$ rtx plugins ls --urls
nodejs https://github.com/asdf-vm/asdf-nodejs.git
ruby https://github.com/asdf-vm/asdf-ruby.git
rtx plugins ls-remote
List all available remote plugins
These are fetched from https://github.com/asdf-vm/asdf-plugins
Examples:
$ rtx plugins ls-remote
Usage: ls-remote [OPTIONS]
Options:
-u, --urls
show the git url for each plugin
e.g.: https://github.com/asdf-vm/asdf-nodejs.git
-h, --help
Print help (see a summary with '-h')
rtx plugins uninstall
removes a plugin
Usage: uninstall <PLUGIN>
Arguments:
<PLUGIN>
plugin to remove
Options:
-h, --help
Print help (see a summary with '-h')
Examples:
$ rtx uninstall nodejs
rtx plugins update
updates a plugin to the latest version
note: this updates the plugin itself, not the runtime versions
Usage: update [OPTIONS] [PLUGIN]...
Arguments:
[PLUGIN]...
plugin(s) to update
Options:
-a, --all
update all plugins
-h, --help
Print help (see a summary with '-h')
Examples:
rtx plugins update --all # update all plugins
rtx plugins update nodejs # update only nodejs
rtx settings get
Show a current setting
This is the contents of a single entry in ~/.config/rtx/config.toml
Note that aliases are also stored in this file
but managed separately with `rtx aliases get`
Usage: get <KEY>
Arguments:
<KEY>
The setting to show
Options:
-h, --help
Print help (see a summary with '-h')
Examples:
$ rtx settings get legacy_version_file
true
rtx settings ls
Show current settings
This is the contents of ~/.config/rtx/config.toml
Note that aliases are also stored in this file
but managed separately with `rtx aliases`
Usage: ls
Options:
-h, --help
Print help (see a summary with '-h')
Examples:
$ rtx settings
legacy_version_file = false
rtx settings set
Add/update a setting
This modifies the contents of ~/.config/rtx/config.toml
Usage: set <KEY> <VALUE>
Arguments:
<KEY>
The setting to set
<VALUE>
The value to set
Options:
-h, --help
Print help (see a summary with '-h')
Examples:
$ rtx settings set legacy_version_file true
rtx settings unset
Clears a setting
This modifies the contents of ~/.config/rtx/config.toml
Usage: unset <KEY>
Arguments:
<KEY>
The setting to remove
Options:
-h, --help
Print help (see a summary with '-h')
Examples:
$ rtx settings unset legacy_version_file
rtx uninstall
removes runtime versions
Usage: uninstall <RUNTIME>...
Arguments:
<RUNTIME>...
runtime(s) to remove
Options:
-h, --help
Print help (see a summary with '-h')
Examples:
$ rtx uninstall nodejs@18 # will uninstall ALL nodejs-18.x versions
$ rtx uninstall nodejs # will uninstall ALL nodejs versions
rtx version
Show rtx version
Usage: version
Options:
-h, --help
Print help
Comparison to asdf
rtx is mostly a clone of asdf, but there are notable areas where improvements have been made.
Performance
asdf made (what I consider) a poor design decision to use shims that go between a call to a runtime
and the runtime itself. e.g.: when you call node
it will call an asdf shim file ~/.asdf/shims/node
,
which then calls asdf exec
, which then calls the correct version of node.
These shims have terrible performance, adding ~200ms to every call. rtx does not use shims and instead
updates PATH
so that it doesn't have any overhead when simply calling binaries. These shims are the main reason that I wrote this.
I don't think it's possible for asdf to fix thse issues. The author of asdf did a great writeup of performance problems. asdf is written in bash which certainly makes it challening to be performant, however I think the real problem is the shim design. I don't think it's possible to fix that without a complete rewrite.
rtx does call an internal command rtx hook-env
every time the directory has changed, but because
it's written in Rust, this is very quick—taking ~2ms on my machine.
tl;dr: asdf adds overhead (~200ms) when calling a runtime, rtx adds a tiny amount of overhead (~2ms) when changing directories.
Environment variables
asdf only helps manage runtime executables. However, some tools are managed via environment variables
(notably Java which switches via JAVA_HOME
). This isn't supported very well in asdf and requires
a separate shell extension just to manage.
However asdf plugins have a bin/exec-env
script that is used for exporting environment variables
like JAVA_HOME
. rtx simply exports
the environment variables from the bin/exec-env
script in the plugin but places them in the shell
for all commands. In asdf it only exports those commands when the shim is called. This means if you
call java
it will set JAVA_HOME
, but not if you call some Java tool like mvn
.
This means we're just using the existing plugin script but because rtx doesn't use shims it can be used for more things. It would be trivial to make a plugin that exports arbitrary environment variables like dotenv or direnv.
UX
Some commands are the same in asdf but others have been changed. Everything that's possible
in asdf should be possible in rtx but may use slighly different syntax. rtx has more forgiving commands,
such as using fuzzy-matching, e.g.: rtx install nodejs@18
. While in asdf you can run
asdf install nodejs latest:18
, you can't use latest:18
in a .tool-versions
file or many other places.
In rtx
you can use fuzzy-matching everywhere.
asdf requires several steps to install a new runtime if the plugin isn't installed, e.g.:
$ asdf plugin add nodejs
$ asdf install nodejs latest:18
$ asdf local nodejs latest:18
In rtx
this can all be done in a single step to set the local runtime version. If the plugin
and/or runtime needs to be installed it will prompt:
$ asdf local nodejs@18
rtx: Would you like to install nodejs@18.13.0? [Y/n] Y
Trying to update node-build... ok
Downloading node-v18.13.0-darwin-arm64.tar.gz...
-> https://nodejs.org/dist/v18.13.0/node-v18.13.0-darwin-arm64.tar.gz
Installing node-v18.13.0-darwin-arm64...
Installed node-v18.13.0-darwin-arm64 to /Users/jdx/.local/share/rtx/installs/nodejs/18.13.0
$ node -v
v18.13.0
I've found asdf to be particularly rigid and difficult to learn. It also made strange decisions like
having asdf list all
but asdf latest --all
(why is one a flag and one a positional argument?).
rtx
makes heavy use of aliases so you don't need to remember if it's rtx plugin add nodejs
or
rtx plugin install nodejs
. If I can guess what you meant, then I'll try to get rtx to respond
in the right way.
That said, there are a lot of great things about asdf. It's the best multi-runtime manager out there and I've really been impressed with the plugin system. Most of the design decisions the authors made were very good. I really just have 2 complaints: the shims and the fact it's written in Bash.
direnv
direnv and rtx both manage environment variables based on directory. Because they both analyze
the current environment variables before and after their respective "hook" commands are run, they
can easily conflict and overwrite each other's environment variables (including, but not limited to, PATH
).
To avoid this, don't use rtx activate
alongside direnv. Instead, call rtx from within direnv
so that it can track the environment variables separately.
To do this, first use rtx
to build a use_rtx
function that you can use in .envrc
files:
$ rtx direnv activate > ~/.config/direnv/lib/use_rtx.sh
# replace ~/.config with XDG_CONFIG_HOME if you've changed it
Now in your .envrc
file add the following:
use rtx
direnv will now call rtx to export its environment variables. You'll need to make sure to add use_rtx
too all projects that use rtx (or use direnv's source_up
to load it from a subdirectory).
Cache Behavior
rtx makes use of caching in many places in order to be efficient. The details about how long to keep cache for should eventually all be configurable. There may be gaps in the current behavior where things are hardcoded but I'm happy to add more settings to cover whatever config is needed.
Below I explain the behavior it uses around caching. If you're seeing behavior where things don't appear to be updating, this is a good place to start.
Shorthand Repository Cache
asdf maintains a shorthand repository which maps plugin
short names (e.g.: nodejs
) to full repository names (e.g.: https://github.com/asdf-vm/asdf-nodejs
).
This is stored in ~/.local/share/rtx/repository
and updated every week by default if short names
are requested. This is similar to what asdf does, but I'm considering just baking this straight into
the codebase so it doesn't have to be fetched/maintained separately. It's not like new plugins get
added that often.
Plugin Cache
Each plugin has a cache that's stored in ~/.local/share/rtx/plugins/<PLUGIN>/.rtxcache.msgpack.gz
. It stores
the list of versions available for that plugin (rtx ls-remote <PLUGIN>
) and the legacy filenames (see below).
It is updated daily by default or anytime that rtx ls-remote
is called explicitly. The file is
gzipped messagepack, if you want to view it you can run the following (requires msgpack-cli).
cat ~/.local/share/rtx/plugins/nodejs/.rtxcache.msgpack.gz | gunzip | msgpack-cli decode
Runtime Cache
Each runtime (language version, e.g.: nodejs@20.0.0
), has a file called "runtimeconf" that's stored
inside the install directory, e.g.: ~/.asdf/installs/nodejs/20.0.0/.rtxconf.msgpack
. This stores the
information about the runtime that should not change after installation. Currently this is just the
bin paths the plugin defines in bin/list-bin-paths
. By default this is just /bin
. It's the list
of paths that rtx will add to PATH
when the runtime is activated.
I have not seen a plugins which has dynamic bin paths but let me know if you find one. If that is the case, we may need to make this cached instead of static.
"Runtimeconf" is stored as uncompressed messagepack and can be viewed with the following:
cat ~/.local/share/rtx/installs/nodejs/18.13.0/.rtxconf.msgpack | msgpack-cli decode
Legacy File Cache
If enabled, rtx will read the legacy filenames such as .node-version
for
asdf-nodejs. This leverages cache in 2 places where the
plugin is called:
list-legacy-filenames
In every plugin I've seen this simply returns a static list of filenamed like ".nvmrc .node-version". It's cached alongside the standard "runtime" cache which is refreshed daily by default.parse-legacy-file
This plugin binary is called to parse a legacy file to get the version out of it. It's relatively expensive so every file that gets parsed as a legacy file is cached into~/.local/share/rtx/legacy_cache
. It will remain cached until the file is modified. This is a simple text file that has the path to the legacy file stored as a hash for the filename.
Development
Run tests with just
:
$ just test
Lint the codebase with:
$ just lint-fix
Dependencies
~17–28MB
~421K SLoC