11 releases (5 stable)
new 1.1.3 | Jan 16, 2025 |
---|---|
1.1.2 | Jan 15, 2025 |
0.1.5 | Jan 7, 2025 |
#182 in Machine learning
927 downloads per month
18KB
RLLM
Note: Starting with version 1.x, RLLM has become a simple wrapper around llm. Both crates will be actively maintained and kept in sync. If you are new to this ecosystem, you can use either llm directly or rllm - they provide the same features.
RLLM is a Rust library that lets you use multiple LLM backends in a single project: OpenAI, Anthropic (Claude), Ollama, DeepSeek, xAI, Phind and Google. With a unified API and builder style - similar to the Stripe experience - you can easily create chat or text completion requests without multiplying structures and crates.
Key Features
- Multi-backend: Manage OpenAI, Anthropic, Ollama, DeepSeek, xAI, Phind and Google through a single entry point.
- Multi-step chains: Create multi-step chains with different backends at each step.
- Templates: Use templates to create complex prompts with variables.
- Builder pattern: Configure your LLM (model, temperature, max_tokens, timeouts...) with a few simple calls.
- Chat & Completions: Two unified traits (
ChatProvider
andCompletionProvider
) to cover most use cases. - Extensible: Easily add new backends.
- Rust-friendly: Designed with clear traits, unified error handling, and conditional compilation via features.
- Validation: Add validation to your requests to ensure the output is what you expect.
- Evaluation: Add evaluation to your requests to score the output of LLMs.
Installation
Simply add RLLM to your Cargo.toml
:
[dependencies]
rllm = { version = "1.1.0", features = ["openai", "anthropic", "ollama"] }
Examples
Name | Description |
---|---|
anthropic_example |
Demonstrates integration with Anthropic's Claude model for chat completion |
chain_example |
Shows how to create multi-step prompt chains for exploring programming language features |
deepseek_example |
Basic DeepSeek chat completion example with deepseek-chat models |
embedding_example |
Basic embedding example with OpenAI's API |
multi_backend_example |
Illustrates chaining multiple LLM backends (OpenAI, Anthropic, DeepSeek) together in a single workflow |
ollama_example |
Example of using local LLMs through Ollama integration |
openai_example |
Basic OpenAI chat completion example with GPT models |
phind_example |
Basic Phind chat completion example with Phind-70B model |
validator_example |
Basic validator example with Anthropic's Claude model |
xai_example |
Basic xAI chat completion example with Grok models |
evaluation_example |
Basic evaluation example with Anthropic, Phind and DeepSeek |
google_example |
Basic Google Gemini chat completion example with Gemini models |
google_embedding_example |
Basic Google Gemini embedding example with Gemini models |
Usage
Here's a basic example using OpenAI for chat completion. See the examples directory for other backends (Anthropic, Ollama, DeepSeek, xAI, Google, Phind), embedding capabilities, and more advanced use cases.
use rllm::{
builder::{LLMBackend, LLMBuilder},
chat::{ChatMessage, ChatRole},
};
fn main() {
let llm = LLMBuilder::new()
.backend(LLMBackend::OpenAI) // or LLMBackend::Anthropic, LLMBackend::Ollama, LLMBackend::DeepSeek, LLMBackend::XAI, LLMBackend::Phind ...
.api_key(std::env::var("OPENAI_API_KEY").unwrap_or("sk-TESTKEY".into()))
.model("gpt-4o") // or model("claude-3-5-sonnet-20240620") or model("grok-2-latest") or model("deepseek-chat") or model("llama3.1") or model("Phind-70B") ...
.max_tokens(1000)
.temperature(0.7)
.system("You are a helpful assistant.")
.stream(false)
.build()
.expect("Failed to build LLM");
}
let messages = vec![
ChatMessage {
role: ChatRole::User,
content: "Tell me that you love cats".into(),
},
ChatMessage {
role: ChatRole::Assistant,
content:
"I am an assistant, I cannot love cats but I can love dogs"
.into(),
},
ChatMessage {
role: ChatRole::User,
content: "Tell me that you love dogs in 2000 chars".into(),
},
];
let chat_resp = llm.chat(&messages);
match chat_resp {
Ok(text) => println!("Chat response:\n{}", text),
Err(e) => eprintln!("Chat error: {}", e),
}
Dependencies
~4–15MB
~198K SLoC