50 releases

new 0.4.2 Jan 12, 2025
0.3.6 Dec 11, 2024
0.3.5 Nov 14, 2024
0.2.0 Jul 29, 2024

#53 in Images

Download history 7/week @ 2024-09-25 3/week @ 2024-10-02 558/week @ 2024-10-09 343/week @ 2024-10-16 50/week @ 2024-10-23 95/week @ 2024-10-30 261/week @ 2024-11-06 356/week @ 2024-11-13 28/week @ 2024-11-20 1/week @ 2024-11-27 18/week @ 2024-12-04 221/week @ 2024-12-11 1/week @ 2024-12-18 269/week @ 2025-01-01 150/week @ 2025-01-08

420 downloads per month

BSD-3-Clause OR Apache-2.0

2MB
36K SLoC

Image scaling library in Rust

crates.io Build

Rust image scale in different color spaces using SIMD and multithreading.

Supported NEON, SSE, AVX-2, AVX-512, AVX-VNNI, WASM.

Colorspace

This library provides for you some conveniences to scale in different color spaces.
Prebuilt options for CIE L*a*b, CIE L*u*v, CIE L*c*h, Linear, Sigmoidal, Oklab, Jzazbz available.
Those transformations also very efficients. Prefer downscale in linear colorspace or XYZ.
Up scaling might be done in LAB/LUB and simoidized components and also efficient in sRGB.

Have good f16 (the “binary16” type defined in IEEE 754-2008) support.

Example integration with image crate

let img = ImageReader::open("./assets/asset.png")
    .unwrap()
    .decode()
    .unwrap();
let dimensions = img.dimensions();
let mut bytes = Vec::from(img.as_bytes());

let mut scaler = LinearScaler::new(ResamplingFunction::Lanczos3);
scaler.set_threading_policy(ThreadingPolicy::Adaptive);
// ImageStore::<u8, 4> - (u8, 4) represents RGBA, (u8, 3) - RGB etc
let store =
    ImageStore::<u8, 4>::from_slice(&mut bytes, dimensions.0 as usize, dimensions.1 as usize).unwrap();
let mut dst_store = ImageStoreMut::<u8, 4>::alloc(dimensions.0 as usize / 2, dimensions.1 as usize / 2);
let resized = scaler.resize_rgba(
    &store,
    &mut dst_store,
    true
);
let resized_image = resized.as_bytes();

Fastest paths using SIMD

Despite all implementation are fast, not all the paths are implemented using SIMD, so some paths are slower

~ - Partially implemented

NEON SSE AVX2 AVX-512 WASM
RGBA (8 bit) x x x x(avxvnni) ~
RGB (8 bit) x x x x(avxvnni) ~
Plane (8 bit) x x ~ ~ ~
RGBA (8+ bit) x x ~ x(avxvnni) -
RGB (8+ bit) x x ~ ~ -
Plane (8+ bit) ~ ~ ~ ~ -
RGBA (f32) x x x - -
RGB (f32) x x ~ - -
Plane (f32) x x ~ - -
RGBA (f16) x x x - -
RGB (f16) x ~ ~ - -
Plane (f16) ~ ~ ~ - -
AR30/RA30 x - - - -

Features

Features:

  • To enable support of f16 the feature half should be activated.
  • nightly_avx512 activates AVX-512 feature set and requires nightly compiler channel

Target features with runtime dispatch

For x86 and aarch64 NEON runtime dispatch is used.

neon optional target features are available, enable it when compiling on supported platform to get full features.

avx2, fma, sse4.1, f16c will be detected automatically if available, no additional actions need, and called the best path.

avx512 requires feature nightly_avx512 and requires nightly compiler channel, runtime detection if it is available then will be used.

avxvnni requires feature nightly_avx512 and requires nightly compiler channel, runtime detection if it is available then will be used. AVX-VNNI is helpful extension on modern Intel and AMD CPU's, consider turn it on to ger maximum performance.

fullfp16 NEON target detection performed in runtime, when available best the best paths for f16 images are available on ARM.

WASM simd128 target feature activating is mandatory in build flags.

About f16

To enable full support of f16 half feature should be used, and f16c enabled when targeting x86 platforms. For NEON f16 feature use runtime detection, if CPU supports this feature then the very fast path is available

Even when half feature activated but platform do not support or features not enabled for f16 speed will be slow

Performance

NEON test made on Apple M3 Pro. AVX2 test made on Premium Intel CPU Optimized 4 vCPU Digital Ocean instance.

Example comparison with fast-image-resize time for downscale RGB 4928x3279 image in 4 times.

Lanczos3 AVX NEON
pic-scale 10.47 6.97
fir 15.62 21.74

Example comparison time for downscale RGBA 4928x3279 image in 4 times with pre-multiplying alpha.

Lanczos3 AVX NEON
pic-scale 43.72 13.56
fir 62.31 33.32

Example comparison time for downscale RGBA 4928x3279 image in 4 times without pre-multiplying alpha.

Lanczos3 AVX NEON
pic-scale 11.13 7.76
fir 20.17 25.92
Apple Accelerate - 9.98

Example comparison time for downscale RGBA 4928x3279 10 bit image in 4 times with pre-multiplying alpha.

Lanczos3 AVX NEON
pic-scale 85.34 22.68
fir 146.23 53.95

RGBA 4928x3279 10 bit downscale 4 two times without pre-multiplying alpha

Lanczos3 AVX NEON
pic-scale 19.15 8.91
fir 58.57 38.46
Apple Accelerate - 27.63

Example comparison time for downscale RGB 4000x6000 10 bit image in 4 times using NEON.

Lanczos3 AVX NEON
pic-scale 25.68 15.56
fir 68.84 39.40

Example in sRGB

In common, you should not downsize an image in sRGB colorspace, however if speed is more preferable than more proper scale you may omit linearizing

let mut scaler = Scaler::new(ResamplingFunction::Hermite);
scaler.set_threading_policy(ThreadingPolicy::Single);
let store = ImageStore::<u8, 4>::from_slice(&bytes, width, height).unwrap();
let mut dst_store = ImageStoreMut::<u8, 4>::alloc(width / 2, height / 2);
let resized = scaler.resize_rgba(
    &store,
    &mut dst_store,
    true
);

Example in linear

At the moment only sRGB transfer function is supported. This is also good optimized path so it is reasonably fast.

let mut scaler = LinearScaler::new(ResamplingFunction::Lanczos3);
scaler.set_threading_policy(ThreadingPolicy::Single);
let store = ImageStore::<u8, 4>::from_slice(&bytes, width, height).unwrap();
let mut dst_store = ImageStoreMut::<u8, 4>::alloc(width / 2, height / 2);
let resized = scaler.resize_rgba(
    &store,
    &mut dst_store,
    true
);

Example in CIE L*a*b

let mut scaler = LabScaler::new(ResamplingFunction::Hermite);
scaler.set_threading_policy(ThreadingPolicy::Single);
let store = ImageStore::<u8, 4>::from_slice(&bytes, width, height).unwrap();
let mut dst_store = ImageStoreMut::<u8, 4>::alloc(width / 2, height / 2);
let resized = scaler.resize_rgba(
    &store,
    &mut dst_store,
    true
);

Example in CIE L*u*v

let mut scaler = LuvScaler::new(ResamplingFunction::Hermite);
scaler.set_threading_policy(ThreadingPolicy::Single);
let store = ImageStore::<u8, 4>::from_slice(&bytes, width, height).unwrap();
let mut dst_store = ImageStoreMut::<u8, 4>::alloc(width / 2, height / 2);
let resized = scaler.resize_rgba(
    &store,
    &mut dst_store,
    true
);

Example in CIE XYZ colorspace

let mut scaler = XYZScale::new(ResamplingFunction::Hermite);
scaler.set_threading_policy(ThreadingPolicy::Single);
let store = ImageStore::<u8, 4>::from_slice(&bytes, width, height).unwrap();
let mut dst_store = ImageStoreMut::<u8, 4>::alloc(width / 2, height / 2);
    let resized = scaler.resize_rgba(
    &store,
    &mut dst_store,
    true
);

Example in LCh colorspace

let mut scaler = LChScaler::new(ResamplingFunction::Hermite);
scaler.set_threading_policy(ThreadingPolicy::Single);
let store = ImageStore::<u8, 4>::from_slice(&bytes, width, height).unwrap();
let mut dst_store = ImageStoreMut::<u8, 4>::alloc(width / 2, height / 2);
let resized = scaler.resize_rgba(
    &store,
    &mut dst_store,
    true
);

Example in Oklab colorspace

let mut scaler = OklabScaler::new(ResamplingFunction::Hermite);
scaler.set_threading_policy(ThreadingPolicy::Single);
let store = ImageStore::<u8, 4>::from_slice(&bytes, width, height).unwrap();
let mut dst_store = ImageStoreMut::<u8, 4>::alloc(width / 2, height / 2);
let resized = scaler.resize_rgba(
    &store,
    &mut dst_store,
    true
);

Build C bindings

See picscale/include/picscale.h for more info

cd picscale && RUSTFLAGS="-C strip=symbols" cargo +nightly build -Z build-std=std,panic_abort --release

Resampling filters

Over 30 resampling filters is supported.

Bilinear
Nearest
Cubic
MitchellNetravalli
CatmullRom
Hermite
BSpline
Hann
Bicubic
Hamming
Hanning
Blackman

And others

This project is licensed under either of

  • BSD-3-Clause License (see LICENSE)
  • Apache License, Version 2.0 (see LICENSE)

at your option.

Dependencies

~1.2–1.8MB
~37K SLoC