2 releases
0.1.1 | Nov 1, 2021 |
---|---|
0.1.0 | Oct 26, 2021 |
#604 in Machine learning
Used in oxineat
195KB
2.5K
SLoC
OxiNEAT-NN
An neural network-based implementation of the OxiNEAT
crate's Genome
trait.
Provides a GenomeNN
type usable in OxiNEAT
Population
s, as well as two neural network implementations which can be generated from a GenomeNN
:
RealTimeNetwork
: best suited for real-time control tasks, with new inputs set for each activation, and multiple time-steps involved.FunctionApproximatorNetwork
: best suited for more instantaneous single-output-per-input function approximation tasks.
Example usage: evolution of XOR function approximator
use oxineat::{Population, PopulationConfig};
use oxineat_nn::{
genomics::{ActivationType, GeneticConfig, NNGenome},
networks::FunctionApproximatorNetwork,
};
use serde_json;
use std::num::NonZeroUsize;
// Allowed error margin for neural net answers.
const ERROR_MARGIN: f32 = 0.3;
fn evaluate_xor(genome: &NNGenome) -> f32 {
let mut network = FunctionApproximatorNetwork::from::<1>(genome);
let values = [
([1.0, 0.0, 0.0], 0.0),
([1.0, 0.0, 1.0], 1.0),
([1.0, 1.0, 0.0], 1.0),
([1.0, 1.0, 1.0], 0.0),
];
let mut errors = [0.0, 0.0, 0.0, 0.0];
for (i, (input, output)) in values.iter().enumerate() {
errors[i] = (network.evaluate_at(input)[0] - output).abs();
if errors[i] < ERROR_MARGIN {
errors[i] = 0.0;
}
}
(4.0 - errors.iter().copied().sum::<f32>()).powf(2.0)
}
fn main() {
let genetic_config = GeneticConfig {
input_count: NonZeroUsize::new(3).unwrap(),
output_count: NonZeroUsize::new(1).unwrap(),
activation_types: vec![ActivationType::Sigmoid],
output_activation_types: vec![ActivationType::Sigmoid],
child_mutation_chance: 0.65,
mate_by_averaging_chance: 0.4,
suppression_reset_chance: 1.0,
initial_expression_chance: 1.0,
weight_bound: 5.0,
weight_reset_chance: 0.2,
weight_nudge_chance: 0.9,
weight_mutation_power: 2.5,
node_addition_mutation_chance: 0.03,
gene_addition_mutation_chance: 0.05,
max_gene_addition_mutation_attempts: 20,
recursion_chance: 0.0,
excess_gene_factor: 1.0,
disjoint_gene_factor: 1.0,
common_weight_factor: 0.4,
..GeneticConfig::zero()
};
let population_config = PopulationConfig {
size: NonZeroUsize::new(150).unwrap(),
distance_threshold: 3.0,
elitism: 1,
survival_threshold: 0.2,
sexual_reproduction_chance: 0.6,
adoption_rate: 1.0,
interspecies_mating_chance: 0.001,
stagnation_threshold: NonZeroUsize::new(15).unwrap(),
stagnation_penalty: 1.0,
};
let mut population = Population::new(population_config, genetic_config);
for _ in 0..100 {
population.evaluate_fitness(evaluate_xor);
if (population.champion().fitness() - 16.0).abs() < f32::EPSILON {
println!("Solution found!: {}", serde_json::to_string(&population.champion()).unwrap());
break;
}
if let Err(e) = population.evolve() {
eprintln!("{}", e);
break;
}
}
}
License
Licensed under the MIT license.Dependencies
~0.7–1.5MB
~32K SLoC