25 releases
0.5.6 | Nov 18, 2024 |
---|---|
0.5.5 | Oct 14, 2024 |
0.5.4 | Aug 23, 2024 |
0.5.3 | Jul 26, 2024 |
0.2.10 | Jun 20, 2024 |
#976 in Text processing
153 downloads per month
315KB
2.5K
SLoC
Matcher Rust Implement C FFI bindings
Overview
A high-performance matcher designed to solve LOGICAL and TEXT VARIATIONS problems in word matching, implemented in Rust.
Installation
Build from source
git clone https://github.com/Lips7/Matcher.git
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- --default-toolchain nightly -y
cargo build --release
Then you should find the libmatcher_c.so
/libmatcher_c.dylib
/matcher_c.dll
in the target/release
directory.
Install pre-built binary
Visit the release page to download the pre-built binary.
Python usage example
import json
from cffi import FFI
from extension_types import MatchTableType, ProcessType, MatchTable
## define ffi
ffi = FFI()
ffi.cdef(open("./matcher_c.h", "r", encoding="utf-8").read())
lib = ffi.dlopen("./matcher_c.so")
# init matcher
matcher = lib.init_matcher(
json.dumps({
1: [
MatchTable(
table_id=1,
match_table_type=MatchTableType.Simple(
process_type=ProcessType.MatchNone
),
word_list=["hello,world", "hello", "world"],
exemption_process_type=ProcessType.MatchNone,
exemption_word_list=[],
)
]
}).encode()
)
# check is match
lib.matcher_is_match(matcher, "hello".encode("utf-8")) # True
# match as list
res = lib.matcher_process_as_string(matcher, "hello,world".encode("utf-8"))
print(ffi.string(res).decode("utf-8"))
# [{"match_id":1,"table_id":1,"word_id":0,"word":"hello,world","similarity":1.0},{"match_id":1,"table_id":1,"word_id":1,"word":"hello","similarity":1.0},{"match_id":1,"table_id":1,"word_id":2,"word":"world","similarity":1.0}]
lib.drop_string(res)
# match as dict
res = lib.matcher_word_match_as_string(matcher, "hello,world".encode("utf-8"))
print(ffi.string(res).decode("utf-8"))
# {"1":[{"match_id":1,"table_id":1,"word_id":0,"word":"hello,world","similarity":1.0},{"match_id":1,"table_id":1,"word_id":1,"word":"hello","similarity":1.0},{"match_id":1,"table_id":1,"word_id":2,"word":"world","similarity":1.0}]}
lib.drop_string(res)
# drop matcher
lib.drop_matcher(matcher)
# init simple matcher
simple_matcher = lib.init_simple_matcher(
json.dumps(({
ProcessType.MatchFanjianDeleteNormalize | ProcessType.MatchPinYinChar: {
1: "妳好&世界",
2: "hello",
}
})).encode()
)
# check is match
lib.simple_matcher_is_match(simple_matcher, "你好世界".encode("utf-8")) # True
# match as list
res = lib.simple_matcher_process_as_string(
simple_matcher, "nihaoshijie!hello!world!".encode("utf-8")
)
print(ffi.string(res).decode("utf-8"))
# [{"word_id":1,"word":"妳好&世界"},{"word_id":2,"word":"hello"}]
lib.drop_string(res)
# drop simple matcher
lib.drop_simple_matcher(simple_matcher)
Important Notes
- The extension_types.py is not required, you can use the dynamic library directly.
- Always call
drop_matcher
,drop_simple_matcher
, anddrop_string
after initializing and processing to avoid memory leaks.
Dependencies
~8–15MB
~195K SLoC