13 unstable releases (4 breaking)
new 0.5.0 | Nov 26, 2024 |
---|---|
0.4.2 | Nov 19, 2024 |
0.3.3 | Aug 21, 2024 |
0.3.0 | Jul 15, 2024 |
0.1.3 | Aug 10, 2023 |
#936 in Network programming
489 downloads per month
27KB
488 lines
lib.rs
:
LLM Service integration for Flows.network
Quick Start
To get started, let's write a tiny flow function.
use llmservice_flows::{
chat::ChatOptions,
LLMServiceFlows,
};
use lambda_flows::{request_received, send_response};
use serde_json::Value;
use std::collections::HashMap;
#[no_mangle]
#[tokio::main(flavor = "current_thread")]
pub async fn run() {
request_received(handler).await;
}
async fn handler(_qry: HashMap<String, Value>, body: Vec<u8>) {
let co = ChatOptions {
model: Some("gpt-4"),
token_limit: 8192,
..Default::default()
};
let mut lf = LLMServiceFlows::new("https://api.openai.com/v1");
lf.set_api_key("your api key");
let r = match lf.chat_completion(
"any_conversation_id",
String::from_utf8_lossy(&body).into_owned().as_str(),
&co,
)
.await
{
Ok(c) => c.choice,
Err(e) => e,
};
send_response(
200,
vec![(
String::from("content-type"),
String::from("text/plain; charset=UTF-8"),
)],
r.as_bytes().to_vec(),
);
}
When the Lambda request is received, chat using LLMServiceFlows::chat_completion then send the response.
Dependencies
~7–20MB
~255K SLoC