5 releases

0.6.2 Nov 20, 2024
0.6.1 Nov 19, 2024
0.5.1 Oct 6, 2024
0.5.0 Oct 6, 2024
0.5.0-rc.1 Oct 2, 2024

#20 in #retro-arch

Download history 421/week @ 2024-10-01 95/week @ 2024-10-08 18/week @ 2024-10-15 298/week @ 2024-11-19 3/week @ 2024-11-26

381 downloads per month

MPL-2.0 OR GPL-3.0-only

280KB
4.5K SLoC

librashader

Mega Bezel SMOOTH-ADV

Mega Bezel SMOOTH-ADV on DirectX 11

librashader (/ˈli:brəʃeɪdɚ/) is a preprocessor, compiler, and runtime for RetroArch 'slang' shaders, rewritten in pure Rust.

Latest Version Docs build result License Stable rust Nightly rust

Installation

For end-users, librashader is available from the Open Build Service for a variety of Linux distributions and platforms. Windows and macOS users can grab the latest binaries from GitHub Releases.

Supported Render APIs

librashader supports all modern graphics runtimes, including wgpu, Vulkan, OpenGL 3.3+ and 4.6 (with DSA), Direct3D 11, Direct3D 12, and Metal.

librashader does not support legacy render APIs such as older versions of OpenGL or Direct3D, except for limited support for Direct3D 9.

API Status librashader feature
OpenGL 3.3+ gl
OpenGL 4.6 gl
Vulkan vk
Direct3D 9 🆗️ d3d9
Direct3D 11 d3d11
Direct3D 12 d3d12
Metal metal
wgpu ✅† wgpu

✅ Full Support — 🆗 Secondary Support

Shader compatibility is not guaranteed on render APIs with secondary support. In particular, Direct3D 9 does not support shaders that need Direct3D 10+ only features, or shaders that can not be compiled to Shader Model 3.0.

†wgpu does not support FSR shaders. This is blocking on support for parsing ImageGather operations in wgpu. Some shaders also require FLOAT32_FILTERABLE to be enabled.

Usage

librashader provides both a Rust API under the librashader crate, and a C API. Both APIs are first-class and fully supported. The C API is geared more towards integration with existing projects. The Rust librashader crate exposes more of the internals if you wish to use parts of librashader piecemeal.

The librashader C API is best used by including librashader_ld.h in your project, which implements a loader that dynamically loads the librashader (librashader.so, librashader.dll, or librashader.dylib) implementation in the search path.

C compatibility

The recommended way of integrating librashader is by the librashader_ld single header library which implements a dynamic loader for librashader.dll / librashader.so / librashader.dylib. See the versioning policy for details on how librashader handles C ABI and API stability with regards to library updates. You can also link dynamically with just librashader.h and the equivalent of -lrashader.

Linking statically against librashader.h is possible, but is not officially supported. You will need to ensure linkage parameters are correct in order to successfully link with librashader.lib or librashader.a. The corrosion CMake package is highly recommended.

Thread safety

Except for the Metal runtime, in general, it is safe to create a filter chain instance from a different thread, but drawing frames requires external synchronization of the filter chain object.

Filter chains can be created from any thread, but requires external synchronization of the graphics device queue where applicable (in Direct3D 11, the immediate context is considered the graphics device queue), as loading LUTs requires command submission to the GPU. Initialization of GPU resources may be deferred asynchronously using the filter_chain_create_deferred functions, but the caller is responsible for submitting the recorded commands to the graphics device queue, and ensuring that the work is complete before drawing shader pass frames.

OpenGL has an additional restriction where creating the filter chain instance in a different thread is safe if and only if the thread local OpenGL context is initialized to the same context as the drawing thread. Support for deferral of GPU resource initialization is not available to OpenGL.

The Metal runtime is not thread safe. However you can still defer submission of GPU resource initialization through the filter_chain_create_deferred function.

The Direct3D 9 API is not thread safe, unless D3DCREATE_MULTITHREADED is enabled at device creation.

Quad vertices and rotations

All runtimes render intermediate passes with an identity matrix MVP and a VBO for with range [-1, 1]. The final pass uses a Quad VBO with range [0, 1] and the following projection matrix by default.

static DEFAULT_MVP: &[f32; 16] = &[
  2.0, 0.0, 0.0, 0.0,
  0.0, 2.0, 0.0, 0.0,
  0.0, 0.0, 0.0, 0.0,
  -1.0, -1.0, 0.0, 1.0,
];

As with RetroArch, a rotation on this MVP will be applied only on the final pass for these runtimes. This is the only way to pass orientation information to shaders.

Writing a librashader Runtime

If you wish to contribute a runtime implementation not already available, see the librashader-runtime crate for helpers and shared logic used across all librashader runtime implementations. Using these helpers and traits will ensure that your runtime has consistent behaviour for uniform and texture semantics bindings with the existing librashader runtimes.

These types should not be exposed to the end user in the runtime's public API, and should be kept internal to the implementation of the runtime.

Command-line interface

librashader provides a command-line interface to reflect and debug 'slang' shaders and presets.

Usage: librashader-cli <COMMAND>

Commands:
  render      Render a shader preset against an image
  compare     Compare two runtimes and get a similarity score between the two runtimes rendering the same frame
  parse       Parse a preset and get a JSON representation of the data
  pack        Create a serialized preset pack from a shader preset
  preprocess  Get the raw GLSL output of a preprocessed shader
  transpile   Transpile a shader in a given preset to the given format
  reflect     Reflect the shader relative to a preset, giving information about semantics used in a slang shader
  help        Print this message or the help of the given subcommand(s)

Options:
  -h, --help     Print help
  -V, --version  Print version

For more information, see CLI.md.

Building

For Rust projects, simply add the crate to your Cargo.toml.

cargo add librashader

To build the C compatible dynamic library, run the build script.

cargo run -p librashader-build-script -- --profile optimized

This will output a librashader.dll or librashader.so in the target folder. Profile can be debug, release, or optimized for full LTO.

While librashader has no build-time dependencies, using librashader_ld.h may require headers from the relevant runtime graphics API.

Building against stable Rust

While librashader is intended to be used with nightly Rust until required features are stabilized, it supports being built with stable Rust with the stable feature.

librashader = { features = ["stable"] }

If building the C API, the --stable flag in the build script will enable the stable feature.

cargo +stable run -p librashader-build-script -- --profile optimized --stable 

There are some caveats when building against stable Rust, such that building librashader against nightly Rust is still highly encouraged.

  • C headers will not be regenerated when building with the stable feature.
  • There is a minor performance hit in initial shader compilation when building against stable Rust. This is due to boxed trait objects being used instead of impl Trait.
  • A higher MSRV is required when building against stable Rust.

When the trait_alias_impl_trait feature is stabilized, the stable feature will be removed.

Examples

The following Rust examples show how to use each librashader runtime.

Some basic examples on using the C API are also provided.

Compatibility

librashader implements the entire RetroArch shader pipeline and is highly compatible with existing shaders.

Please report an issue if you run into a shader that works in RetroArch, but not under librashader.

  • Filter chains do not terminate at the backbuffer.
    • Unlike RetroArch, librashader does not have full knowledge of the entire rendering state and is designed to be pluggable at any point in your render pipeline. Instead, filter chains terminate at a caller-provided output surface and viewport. It is the caller's responsibility to blit the surface back to the backbuffer.
  • Shaders are compiled in parallel where possible. This should noticeably decrease preset compile times. Parallel shader compilation is not available to OpenGL.
  • HDR10 support is not part of any shader runtime and is not supported by librashader.
  • For performance reasons, mipmaps are never generated for the input texture. In theory, this means that presets with mipmap_input0 = "true" will not get a mipmapped input. In practice, no known shader presets set mipmap_input0 = "true".
  • The preset parser is a substantially stricter implementation that the one in RetroArch. Not all shader presets may be compatible. If you find this is the case, please file an issue so a workaround can be added.
  • Shaders are pre-linked at the SPIR-V level before being passed to the driver. Unused inputs in the fragment shader are removed, and the corresponding input in the vertex shader is downgraded to a global variable.

Runtime specific differences

  • OpenGL
    • Copying of in-flight framebuffer contents to history is done via glBlitFramebuffer rather than drawing a quad into an intermediate FBO.
    • Sampler objects are used rather than glTexParameter.
    • Sampler inputs and outputs are not renamed. This is useful for debugging shaders in RenderDoc.
    • UBO and Push Constant Buffer sizes are padded to 16-byte boundaries.
    • The OpenGL runtime uses the same VBOs as the other runtimes as well as the identity matrix MVP for intermediate passes. RetroArch's OpenGL driver uses only the final VBO.
  • OpenGL 4.6+
    • All caveats from the OpenGL 3.3+ section should be considered.
    • Should work on OpenGL 4.5 but this is not guaranteed. The OpenGL 4.6 runtime may eventually switch to using ARB_spirv_extensions for loading shaders, and this will not be marked as a breaking change.
    • The OpenGL 4.6 runtime uses Direct State Access to minimize changes to the OpenGL state. For GPUs released within the last 5 years, this may improve performance.
    • The OpenGL runtime uses the same VBOs as the other runtimes as well as the identity matrix MVP for intermediate passes. RetroArch's OpenGL driver uses only the final VBO.
  • Vulkan
    • The Vulkan runtime can use VK_KHR_dynamic_rendering. This extension must be enabled at device creation. Dynamic rendering may have improved performance when enabled, and supported by the host hardware.
    • Allocations within the runtime are done through gpu-allocator rather than handled manually.
  • Direct3D 11
    • Framebuffer copies are done via ID3D11DeviceContext::CopySubresourceRegion rather than a CPU conversion + copy.
  • Direct3D 12
    • The Direct3D 12 runtime uses render passes. This feature has been available since Windows 10 version 1809, which was released in late 2018.
    • For maximum compatibility with shaders, a shader compile pipeline based on spirv-to-dxil is used, with the SPIRV-Cross HLSL pipeline used as a fallback. This brings shader compatibility beyond what the RetroArch Direct3D 12 driver provides. The HLSL pipeline fallback may be removed in the future as spirv-to-dxil improves.
    • The Direct3D 12 runtime requires dxcompiler.dll from the DirectX Shader Compiler, which may already be installed as part of Direct3D12. dxil.dll is not required.
  • Metal
    • The Metal runtime uses the same VBOs as the other runtimes as well as the identity matrix MVP for intermediate passes. RetroArch's Metal driver uses only the final VBO.

Most, if not all shader presets should work fine on librashader. The runtime specific differences should not affect the output, and are more a heads-up for integrating librashader into your project.

Versioning

Latest Version C ABI C API

librashader typically follows Semantic Versioning with respect to the Rust API, where a minor version number bump indicates a 'breaking change' during 0.x.y, and a non-'breaking change' after 1.x.y. However, a "breaking change" that results in a version number bump does not correspond to a break in the C API after version 0.1.0.

The C API is instead versioned separately with two monotonically increasing version numbers exported to the librashader C headers

An increase in LIBRASHADER_CURRENT_VERSION is guaranteed to be backwards compatible for the same LIBRASHADER_CURRENT_ABI. It somewhat corresponds to a "minor" version in semantic versioning terminology, except that it is always monotonically increasing. Backwards-compatible additions to the C API will result in an increase to LIBRASHADER_CURRENT_VERSION.

APIs introduced after a certain LIBRASHADER_CURRENT_VERSION may or may not be available to prior versions. In particular, new features enabled by filter or frame option structs require LIBRASHADER_CURRENT_VERSION be the greater than or equal to the version in which the option was introduced, or a default value will be passed, which may or may not enable the feature depending on backwards compatibility for that particular feature.

Any change to LIBRASHADER_CURRENT_ABI indicates a breaking change for the C ABI. For safety reasons, librashader_ld.h will check to ensure that LIBRASHADER_CURRENT_ABI matches that of the loaded librashader binary. If it does not match, librashader will not load. A value of 0 for LIBRASHADER_CURRENT_ABI indicates the "null" instance where every operation is a no-op, which occurs if no compatible librashader implementation could be found.

The SONAME of librashader.so when installed via package manager is set to LIBRASHADER_CURRENT_ABI.

The above does not apply to releases of librashader prior to 0.1.0, which were allowed to break API and ABI compatibility in both the Rust and C API without an increase to either LIBRASHADER_CURRENT_VERSION or LIBRASHADER_CURRENT_ABI.

The ABI version was bumped from 1 to 2 with librashader 0.5.0. See MIGRATION-ABI2.md for migration instructions.

MSRV Policy

Building against stable Rust requires the following MSRV.

  • All platforms: 1.78

When building against nightly Rust, the following MSRV policy is enforced for unstable library features.

  • All platforms: 1.78

A CI job runs weekly to ensure librashader continues to build on nightly.

Note that the MSRV is only intended to ease distribution on Linux when building against nightly Rust or with RUSTC_BOOTSTRAP=1, and is allowed to change any time. It generally tracks the latest version of Rust available in the latest version of Ubuntu, but this may change with no warning in a patch release.

License

The core parts of librashader such as the preprocessor, the preset parser, the reflection library, and the runtimes, are all licensed under the Mozilla Public License version 2.0.

The librashader C API, i.e. its headers and definitions, not its implementation in librashader-capi, are more permissively licensed, and may allow you to use librashader in your permissively licensed or proprietary project.

To facilitate easier use of librashader in projects incompatible with MPL-2.0, librashader_ld implements a loader which thunks its calls to any librashader.so, librashader.dll, or librashader.dylib. library found in the load path. A non-MPL-2.0 compatible project may link against librashader_ld to use the librashader runtime, provided that librashader.so, librashader.dll or librashader.dylib are distributed under the restrictions of MPLv2.

Note that this means that if your project is unable to comply with the requirements of MPL-2.0, you can not distribute librashader.so, librashader.dll or librashader.dylib alongside your project. The end user must obtain the implementation of librashader themselves. For more information, see the MPL 2.0 FAQ.

At your discretion, you may instead choose to distribute librashader under the terms of GPLv3 rather than MPL-2.0.

Dependencies

~37–94MB
~2M SLoC