#spherical #quadrature #integration

lebedev_laikov

Lebedev–Laikov quadrature for numerical integration in spherical coordinates

1 unstable release

Uses old Rust 2015

0.1.0 Jul 9, 2024

#527 in Science

27 downloads per month
Used in clue_oxide

MIT/Apache

285KB
5.5K SLoC

C 5.5K SLoC // 0.2% comments Rust 181 SLoC // 0.0% comments Python 34 SLoC // 0.5% comments

lebedev_laikov

Lebedev–Laikov quadrature for numerical integration in spherical coordinates.

In this scheme, surface integrals over the sphere are approximated as:

∫ f(Ω) dΩ = ∫ f(θ, φ) sin(θ) dθ dφ ≈ 4 π ∑ₖ wₖ f(xₖ, yₖ, zₖ)

Note that the weights are normalized such that they sum to one.

Usage

Building library requires a C compiler (but not Fortran). It uses C source code (bundled) translated from Fortran, originally hosted on ccl.net.

Reference

V. I. Lebedev, and D. N. Laikov, “A quadrature formula for the sphere of the 131st algebraic order of accuracy,” Doklady Mathematics, 59 (3), 477-481 (1999). http://rad.chem.msu.ru/~laikov/ru/DAN_366_741.pdf


lib.rs:

Lebedev–Laikov quadrature

Approximates surface integrals over the sphere as:

∫ f(Ω) dΩ = ∫ f(θ, φ) sin(θ) dθ dφ ≈ 4 π ∑ₖ wₖ f(xₖ, yₖ, zₖ)

Note that the weights are normalized such that they sum to one.

Reference

V. I. Lebedev, and D. N. Laikov, “A quadrature formula for the sphere of the 131st algebraic order of accuracy,” Doklady Mathematics, 59 (3), 477-481 (1999). http://rad.chem.msu.ru/~laikov/ru/DAN_366_741.pdf

Dependencies