#kriging #model #raster #file-path #path-buf #export #prediction #true #csv #variogram

bin+lib kriging

This crate supports ordinary and universal kriging. Additionaly, it provides tools to create and fit variograms.

1 unstable release

Uses new Rust 2024

0.0.1 Apr 9, 2025

#31 in #prediction

Download history 127/week @ 2025-04-09

127 downloads per month

MIT license

150KB
558 lines

Kriging

This crate supports ordinary and universal kriging. Additionaly, it provides tools to create and fit variograms.

For now, all data must have EPSG:4326 (WGS84) as Coordinate Reference System (CRS).


lib.rs:

Kriging

This crate supports ordinary and universal kriging. Additionaly, it provides tools to create and fit variograms.

Ordinary kriging example

use std::path::PathBuf;
use polars::prelude::*;

use kriging::variogram::*;
use kriging::kriging::*;
use kriging::raster::*;

fn main() {
    let df = CsvReadOptions::default()
        .with_infer_schema_length(None)
        .with_has_header(true)
        .try_into_reader_with_file_path(Some("data.csv"))?
        .finish()?;

    let longitudes = df.column("lon")?.f64()?;
    let latitudes = df.column("lat")?.f64()?;
    let temps = df.column("temperature")?.f64()?;

    let longitudes = longitudes.to_vec().into_iter().filter_map(|x| x).collect();
    let latitudes = latitudes.to_vec().into_iter().filter_map(|x| x).collect();
    let temps = temps.to_vec().into_iter().filter_map(|x| x).collect();

    // Create an empirical variogram
    let empirical_variogram = EmpiricalVariogram::new(&longitudes, &latitudes, &temps);

    // Calculate the max values (optional for a first variogram estimation)
    let max_x_data = empirical_variogram.get_max_distance();
    let max_y_data = empirical_variogram.get_max_semivariance();

    // Define initial parameters for the model
    let mut variogram = Variogram::new(
        0.0, 
        max_y_data, 
        max_x_data / 3.0, 
        VariogramModel::Spherical
    );

    // Perform gradient descent to fit variogram
    variogram.fit(
        &empirical_variogram, 
        1e-2, 
        1000, 
        1e-6
    );

    println!("\nFitted Parameters:");
    println!("Nugget: {:.4}", variogram.nugget);
    println!("Sill: {:.4}", variogram.sill);
    println!("Range: {:.2}", variogram.range);

    // Plot the points (empirical variogram) and the fitted curve (variogram)
    let mut semivariogram_file_path = PathBuf::from("semivariogram.png");
    plot(&variogram, &empirical_variogram, &semivariogram_file_path);

    // Prepare coords and values for ordinary kriging
    let known_coords: Vec<(f64, f64)> = longitudes
        .into_iter()
        .zip(latitudes)
        .collect();

    let known_values: Vec<f64> = temps;

    // Read prediction points from TIF file
    let mut template_raster_file_path = PathBuf::from("sky_view_factor.tif");
    let prediction_points = read_raster_coords(&template_raster_file_path)?;

    // Perform ordinary kriging
    let predictions = ordinary_kriging(&known_coords, &known_values, &prediction_points, &variogram);

    // Export prediction
    let mut output_raster_file_path = PathBuf::from("interpolation.tif");
    export_predictions_to_raster(
        &template_raster_file_path,
        &output_raster_file_path, 
        &predictions
    )?;
}

Universal kriging example

use std::path::PathBuf;
use polars::prelude::*;

use kriging::variogram::*;
use kriging::kriging::*;
use kriging::raster::*;

fn main() {
    // Read observations
    let df = CsvReadOptions::default()
        .with_infer_schema_length(None)
        .with_has_header(true)
        .try_into_reader_with_file_path(Some("data.csv"))?
        .finish()?;

    let longitudes = df.column("lon")?.f64()?;
    let latitudes = df.column("lat")?.f64()?;
    let temps = df.column("temperature")?.f64()?;

    let longitudes = longitudes.to_vec().into_iter().filter_map(|x| x).collect();
    let latitudes = latitudes.to_vec().into_iter().filter_map(|x| x).collect();
    let temps = temps.to_vec().into_iter().filter_map(|x| x).collect();

    // This variogram will be fitted with the residuals inside universal_kriging()
    let initial_estimation_variogram = Variogram::new(
        0.1, 
        0.4, 
        1000, 
        VariogramModel::Spherical
    );

    // Prepare coords and values for ordinary kriging
    let known_coords: Vec<(f64, f64)> = longitudes
        .into_iter()
        .zip(latitudes)
        .collect();

    let known_values: Vec<f64> = temps;

    // Read prediction points from TIF file
    let mut template_raster_file_path = PathBuf::from("sky_view_factor.tif");
    let prediction_points = read_raster_coords(&template_raster_file_path)?;

    // Perform ordinary kriging
    // Read covariates
    let gli_path = PathBuf::from(env::var("CARGO_MANIFEST_DIR").unwrap()).join("data/gli.tif");
    let svf_path = PathBuf::from(env::var("CARGO_MANIFEST_DIR").unwrap()).join("data/svf.tif");
    let drift = RasterDrift::new(&[gli_path.to_str().unwrap(), svf_path.to_str().unwrap()]);

    // Perform ordinary kriging
    let (predictions, variances) = universal_kriging(
        &known_coords, &known_values, &prediction_points, drift, initial_estimation_variogram
    );

    // Export prediction
    let mut output_raster_file_path = PathBuf::from("interpolation.tif");
    export_predictions_to_raster(
        &template_raster_file_path,
        &output_raster_file_path,
        &predictions
    )?;

    // Export variances
    let mut output_raster_file_path = PathBuf::from(&root_dir);
    output_raster_file_path.push("variances.tif");
    export_predictions_to_raster(
        &template_raster_file_path,
        &output_raster_file_path, 
        &variances
    )?;
}

Dependencies

~46MB
~1M SLoC