#algorithm #sequence #values #kolakoski

kolakoski_algorithms

Efficient algorithms for the Kolakoski sequence

1 unstable release

0.1.0 Jan 4, 2025

#497 in Math

Download history 126/week @ 2025-01-01 9/week @ 2025-01-08

135 downloads per month

MIT/Apache

9KB
172 lines

This crate implements an iterator returning the tuples (kn, dn), where kn is the nth term of the Kolakoski sequence and dn = ∑i in 1..=n (−1)ki is the “Kolakoski discrepancy function”.

use kolakoski_algorithms::Kolakoski;

println!("{:?}", Kolakoski::default().take(20).map(|(k, _)| k).collect::<Vec<_>>());
// [1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1]
# assert_eq!(&[1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1][..], &Kolakoski::default().take(20).map(|(k, _)| k).collect::<Vec<_>>());

If you are interested in analysing the behaviour of the sequence for certain large values of the argument, you can avoid generating all preceding terms:

# use kolakoski_algorithms::Kolakoski;
println!("{:?}", Kolakoski::new(1_000_000_000).take(100).collect::<Vec<_>>());

No runtime deps