1 unstable release
0.0.0 | Aug 31, 2024 |
---|
#7 in #dynamic-image
1MB
20K
SLoC
Imageun
imageun: Image Unleashed/Imagine is a fork of
image-rs/image due to the limitation
of the project not being willing to make significant breaking changes. This
is because of the effect breaking changes would have on the library
consumers. This is a reasonable position to take, however there exist many
large issues with the image-rs/image
library that have been open for many
years due to this limitation.
This project's goal is to see how far the image
library can go (how many
issues of the upstream project we can fix) if we unleash it from it's
breaking change chains. See this
issue for more info on the
inspiration for this project.
See the FIXES.md
file for a maintained list of issues from the upstream
project that have been fixed.
There are drawbacks with any fork of large projects in that it splits the code maintenance of that project, code improvements made to one project are now missing from the other library unless extra effort is made to port the improvements between the libraries. This porting can become increasingly difficult as the projects' codebases further diverge.
I think it is also worth mentioning the zune-image project, another image project with speed and performance given as reasons for making another image project.
An Image Encoding/Decoding Library
This crate provides basic image processing functions and methods for converting to and from various image formats.
All image processing functions provided operate on types that implement the
GenericImageView
and GenericImage
traits and return an ImageBuffer
.
High level API
Load images using ImageReader
:
use std::io::Cursor;
use image::ImageReader;
let img = ImageReader::open("myimage.png")?.decode()?;
let img2 = ImageReader::new(Cursor::new(bytes)).with_guessed_format()?.decode()?;
And save them using save
or write_to
methods:
img.save("empty.jpg")?;
let mut bytes: Vec<u8> = Vec::new();
img2.write_to(&mut Cursor::new(&mut bytes), image::ImageFormat::Png)?;
Supported Image Formats
With default features enabled, image
provides implementations of many
common image format encoders and decoders.
Format | Decoding | Encoding |
---|---|---|
AVIF | Yes (8-bit only) * | Yes (lossy only) |
BMP | Yes | Yes |
DDS | Yes | --- |
Farbfeld | Yes | Yes |
GIF | Yes | Yes |
HDR | Yes | Yes |
ICO | Yes | Yes |
JPEG | Yes | Yes |
EXR | Yes | Yes |
PNG | Yes | Yes |
PNM | Yes | Yes |
QOI | Yes | Yes |
TGA | Yes | Yes |
TIFF | Yes | Yes |
WebP | Yes | Yes (lossless only) |
- * Requires the
avif-native
feature, uses the libdav1d C library.
Image Types
This crate provides a number of different types for representing images. Individual pixels within images are indexed with (0,0) at the top left corner.
ImageBuffer
An image parameterised by its Pixel type, represented by a width and height
and a vector of pixels. It provides direct access to its pixels and
implements the GenericImageView
and GenericImage
traits.
DynamicImage
A DynamicImage
is an enumeration over all supported ImageBuffer<P>
types. Its exact image type is determined at runtime. It is the type
returned when opening an image. For convenience DynamicImage
reimplements
all image processing functions.
The GenericImageView
and GenericImage
Traits
Traits that provide methods for inspecting (GenericImageView
) and
manipulating (GenericImage
) images, parameterised over the image's pixel
type.
SubImage
A view into another image, delimited by the coordinates of a rectangle. The coordinates given set the position of the top left corner of the rectangle. This is used to perform image processing functions on a subregion of an image.
The ImageDecoder
and ImageDecoderRect
Traits
All image format decoders implement the ImageDecoder
trait which provide
basic methods for getting image metadata and decoding images. Some formats
additionally provide ImageDecoderRect
implementations which allow for
decoding only part of an image at once.
The most important methods for decoders are...
- dimensions: Return a tuple containing the width and height of the image.
- color_type: Return the color type of the image data produced by this decoder.
- read_image: Decode the entire image into a slice of bytes.
Pixels
image
provides the following pixel types:
- Rgb: RGB pixel
- Rgba: RGB with alpha (RGBA pixel)
- Luma: Grayscale pixel
- LumaA: Grayscale with alpha
All pixels are parameterised by their component type.
Image Processing Functions
These are the functions defined in the imageops
module. All functions
operate on types that implement the GenericImage
trait. Note that some of
the functions are very slow in debug mode. Make sure to use release mode if
you experience any performance issues.
- blur: Performs a Gaussian blur on the supplied image.
- brighten: Brighten the supplied image.
- huerotate: Hue rotate the supplied image by degrees.
- contrast: Adjust the contrast of the supplied image.
- crop: Return a mutable view into an image.
- filter3x3: Perform a 3x3 box filter on the supplied image.
- flip_horizontal: Flip an image horizontally.
- flip_vertical: Flip an image vertically.
- grayscale: Convert the supplied image to grayscale.
- invert: Invert each pixel within the supplied image This function operates in place.
- resize: Resize the supplied image to the specified dimensions.
- rotate180: Rotate an image 180 degrees clockwise.
- rotate270: Rotate an image 270 degrees clockwise.
- rotate90: Rotate an image 90 degrees clockwise.
- unsharpen: Performs an unsharpen mask on the supplied image.
For more options, see the imageproc
crate.
Examples
Opening and Saving Images
image
provides the open
function for opening images from a path. The image
format is determined from the path's file extension. An io
module provides a
reader which offer some more control.
use image::GenericImageView;
// Use the open function to load an image from a Path.
// `open` returns a `DynamicImage` on success.
let img = image::open("tests/images/jpg/progressive/cat.jpg").unwrap();
// The dimensions method returns the images width and height.
println!("dimensions {:?}", img.dimensions());
// The color method returns the image's `ColorType`.
println!("{:?}", img.color());
// Write the contents of this image to the Writer in PNG format.
img.save("test.png").unwrap();
Generating Fractals
//! An example of generating julia fractals.
let imgx = 800;
let imgy = 800;
let scalex = 3.0 / imgx as f32;
let scaley = 3.0 / imgy as f32;
// Create a new ImgBuf with width: imgx and height: imgy
let mut imgbuf = image::ImageBuffer::new(imgx, imgy);
// Iterate over the coordinates and pixels of the image
for (x, y, pixel) in imgbuf.enumerate_pixels_mut() {
let r = (0.3 * x as f32) as u8;
let b = (0.3 * y as f32) as u8;
*pixel = image::Rgb([r, 0, b]);
}
// A redundant loop to demonstrate reading image data
for x in 0..imgx {
for y in 0..imgy {
let cx = y as f32 * scalex - 1.5;
let cy = x as f32 * scaley - 1.5;
let c = num_complex::Complex::new(-0.4, 0.6);
let mut z = num_complex::Complex::new(cx, cy);
let mut i = 0;
while i < 255 && z.norm() <= 2.0 {
z = z * z + c;
i += 1;
}
let pixel = imgbuf.get_pixel_mut(x, y);
let image::Rgb(data) = *pixel;
*pixel = image::Rgb([data[0], i as u8, data[2]]);
}
}
// Save the image as “fractal.png”, the format is deduced from the path
imgbuf.save("fractal.png").unwrap();
Example output:
Writing raw buffers
If the high level interface is not needed because the image was obtained by
other means, image
provides the function save_buffer
to save a buffer
to a file.
let buffer: &[u8] = unimplemented!(); // Generate the image data
// Save the buffer as "image.png"
image::save_buffer("image.png", buffer, 800, 600, image::ExtendedColorType::Rgb8).unwrap()
Maintenance and Contributing
Maintainers: @ripytide
See the CONTRIBUTING.md
file.
Dependencies
~1.5–6MB
~114K SLoC