50 releases (31 breaking)
0.32.1 | Sep 4, 2021 |
---|---|
0.31.1 | Nov 23, 2020 |
0.28.1 | Jan 11, 2020 |
0.28.0 | Mar 2, 2019 |
0.20.0 | Jul 26, 2018 |
#10 in #pricing
127 downloads per month
Used in 2 crates
71KB
1.5K
SLoC
[lin-badge]: https://github.com/danielhstahl/fang_oost_option_rust/workflows/Rust/badge.svg [cov-badge]: https://codecov.io/gh/danielhstahl/fang_oost_option_rust/branch/master/graph/badge.svg
Linux | Codecov |
---|---|
![lin-badge] | ![cov-badge] |
Fang-Oosterlee Option Pricing for Rust
Implements Fang-Oosterlee option pricing in Rust. Documentation is at docs.rs
Use
The crate is available on crates.io.
Import and use:
extern crate num_complex;
use num_complex::Complex;
extern crate fang_oost_option;
use rayon::prelude::*;
use fang_oost_option::option_pricing;
let num_u:usize = 256;
let asset = 50.0;
let strikes = vec![75.0, 50.0, 40.0];
// max_strike sets the domain of the empirical estimate.
// This should be large enough to capture the potential
// dynamics of the underlying, but not too large or accuracy
// will sacrificed. A good rule of thumb is to scale this
// in proportion to the volatility of the underlying. For
// example, if the underlying is 50.0 and has a (log)
// volatility of 0.3, then a good max strike would be
// exp(0.3*scale)*50.0. I tend to use scale=10, yielding
// in this example ~1004.
let max_strike = 1004.0;
let rate = 0.03;
let t_maturity = 0.5;
let volatility:f64 = 0.3;
//As an example, cf is standard diffusion
let cf = |u: &Complex<f64>| {
((rate-volatility*volatility*0.5)*t_maturity*u+volatility*volatility*t_maturity*u*u*0.5).exp()
};
let prices: Vec<fang_oost::GraphElement>= option_pricing::fang_oost_call_price(
num_u, asset, &strikes, max_strike,
rate, t_maturity, &cf
).collect();
Speed
The benchmarks are comparable to my C++ implementation. To run the tests with benchmarking, use cargo bench
. You can see the benchmarks at https://danielhstahl.github.io/fang_oost_option_rust/report/index.html.
Dependencies
~2–2.9MB
~59K SLoC