2 unstable releases
Uses old Rust 2015
0.2.0 | Sep 4, 2016 |
---|---|
0.1.0 | Sep 4, 2016 |
#796 in Images
319 downloads per month
Used in 8 crates
50KB
999 lines
Exoquant 0.1.0
Exoquant is a very high quality image quantization library written in Rust featuring code for basic color quantization, K-Means palette optimization and remapping and dithering with Floyd-Steinberg and ordered ditherers.
This version of the library is a much improved rewrite of a C library of the same name written back in 2004.
Usage
Add exoquant as a dependency to your Cargo.toml:
[dependencies]
exoquant = "0.2.0"
Basic API:
For simple use cases, there is a convenience function that simply takes true color image data + a few options as input and returns the palette and indexed image data as output:
use exoquant::*;
let image = testdata::test_image();
let (palette, indexed_data) = convert_to_indexed(&image.pixels, image.width, 256,
&optimizer::KMeans, &ditherer::FloydSteinberg::new());
Low-Level API:
The low-level API gives you full control over the quantization workflow. It allows for use-cases like:
- only create a palette and do the remapping in your own custom code
- remap images to an existing palette or one created with a different library
- generating a single palette for multiple input images (or, say, frames of a GIF)
- implement your own custom ditherer (also usable with the basic API)
Using the low-level API to quantize an image looks like this:
use exoquant::*;
use exoquant::optimizer::Optimizer;
let image = testdata::test_image();
let histogram = image.pixels.iter().cloned().collect();
let colorspace = SimpleColorSpace::default();
let optimizer = optimizer::KMeans;
let mut quantizer = Quantizer::new(&histogram, &colorspace);
while quantizer.num_colors() < 256 {
quantizer.step();
// very optional optimization, !very slow!
// you probably only want to do this every N steps, if at all.
if quantizer.num_colors() % 64 == 0 {
quantizer = quantizer.optimize(&optimizer, 4);
}
}
let palette = quantizer.colors(&colorspace);
// this optimization is more useful than the above and a lot less slow
let palette = optimizer.optimize_palette(&colorspace, &palette, &histogram, 16);
let ditherer = ditherer::FloydSteinberg::new();
let remapper = Remapper::new(&palette, &colorspace, &ditherer);
let indexed_data = remapper.remap(&image.pixels, image.width);
API Documentation
Dependencies
~0–265KB