13 releases
new 0.3.6 | Jan 17, 2025 |
---|---|
0.3.4 | Nov 14, 2024 |
0.3.2 | Aug 14, 2024 |
0.2.14 | Aug 10, 2024 |
0.1.0 | Mar 25, 2023 |
#494 in Web programming
38KB
539 lines
dom-content-extraction
A Rust library for extracting main content from web pages using text density analysis. This is an implementation of the Content Extraction via Text Density (CETD) algorithm described in the paper by Fei Sun, Dandan Song and Lejian Liao: Content Extraction via Text Density.
What Problem Does This Solve?
Web pages often contain a lot of peripheral content like navigation menus, advertisements, footers, and sidebars. This makes it challenging to extract just the main content programmatically. This library helps solve this problem by:
- Analyzing the text density patterns in HTML documents
- Identifying content-rich sections versus navigational/peripheral elements
- Extracting the main content while filtering out noise
- Handling various HTML layouts and structures
Key Features
- Build a density tree representing text distribution in the HTML document
- Calculate composite text density using multiple metrics
- Extract main content blocks based on density patterns
- Support for nested HTML structures
- Efficient processing of large documents
- Error handling for malformed HTML
Usage
Due to "LazyLock" MSRV is 1.80
Basic usage example:
use scraper::Html;
use dom_content_extraction::{DensityTree, get_node_text};
let document = Html::parse_document(&html_content);
let mut dtree = DensityTree::from_document(&document).unwrap();
let _ = dtree.calculate_density_sum();
let extracted_content = dtree.extract_content(&document).unwrap();
println!("Extracted content:\n{}", extracted_content);
Installation
Add it it with:
cargo add dom-content-extraction
or add to you Cargo.toml
dom-content-extraction = "0.3"
Documentation
Read the docs!
dom-content-extraction documentation
Run examples
Check examples.
This one will extract content from generated "lorem ipsum" page
cargo run --example check -- lorem-ipsum
This one print node with highest density:
cargo run --examples check -- test4
There is scoring example i'm trying to implement scoring. You will need to download GoldenStandard and finalrun-input datasets from:
https://sigwac.org.uk/cleaneval/
and unpack archives into data/
directory.
cargo run --example ce_score
As far as i see there is problem opening some files:
Error processing file 730: Failed to read file: "data/finalrun-input/730.html"
Caused by:
stream did not contain valid UTF-8
But overall extraction works pretty well:
Overall Performance:
Files processed: 370
Average Precision: 0.87
Average Recall: 0.82
Average F1 Score: 0.75
Desired features
- implement normal scoring
- create real world dataset
Dependencies
~2.6–8MB
~71K SLoC