4 releases
new 0.1.3 | Feb 21, 2025 |
---|---|
0.1.2 | Feb 19, 2025 |
0.1.1 | Feb 19, 2025 |
0.1.0 | Feb 19, 2025 |
#262 in Algorithms
143 downloads per month
145KB
2.5K
SLoC
DiffusionX
Development is in progress. DiffusionX is a multi-threaded high-performance Rust library for random number/stochastic process simulation.
Usage
Getting Started
Add the following to your Cargo.toml
:
[dependencies]
diffusionx = "*"
Or use the following command to install:
cargo add diffusionx
Random Number Generation
use diffusionx::random::{normal, uniform, exponential, poisson, stable};
// Normal Distribution
let normal_sample = normal::rand(0.0, 1.0)?; // Generate a normal random number with mean 0.0 and std 1.0
let normal_samples = normal::rands(2.0, 3.0, 1000)?; // Generate 1000 normal random numbers with mean 2.0 and std 3.0
let std_normal_sample = normal::standard_rand(); // Generate a standard normal random number (mean 0, std 1)
let std_normal_samples = normal::standard_rands(1000); // Generate 1000 standard normal random numbers
// Uniform Distribution
let uniform_sample = uniform::range_rand(0..10)?; // Generate a uniform random number in range [0, 10)
let uniform_samples = uniform::range_rands(0..10, 1000)?; // Generate 1000 uniform random numbers in range [0, 10)
let uniform_incl_sample = uniform::inclusive_range_rand(0..=10)?; // Generate a uniform random number in range [0, 10]
let uniform_incl_samples = uniform::inclusive_range_rands(0..=10, 1000)?; // Generate 1000 uniform random numbers in range [0, 10]
let std_uniform_sample = uniform::standard_rand(); // Generate a uniform random number in range [0, 1)
let std_uniform_samples = uniform::standard_rands(1000); // Generate 1000 uniform random numbers in range [0, 1)
let bool_sample = uniform::bool_rand(0.7)?; // Generate a boolean with probability 0.7
let bool_samples = uniform::bool_rands(0.7, 1000)?; // Generate 1000 booleans with probability 0.7
// Exponential Distribution
let exp_sample = exponential::rand(1.0)?; // Generate an exponential random number with rate 1.0
let exp_samples = exponential::rands(1.0, 1000)?; // Generate 1000 exponential random numbers with rate 1.0
// Poisson Distribution
let poisson_sample = poisson::rand(5.0)?; // Generate a Poisson random number with mean 5.0
let poisson_samples = poisson::rands(5.0, 1000)?; // Generate 1000 Poisson random numbers with mean 5.0
// α-Stable Distribution
// Standard α-stable distribution (σ=1, μ=0)
let stable_sample = stable::standard_rand(1.5, 0.5)?; // Generate a standard stable random number with α=1.5, β=0.5
let stable_samples = stable::standard_rands(1.5, 0.5, 1000)?; // Generate 1000 standard stable random numbers
// General α-stable distribution
let stable_sample = stable::rand(1.5, 0.5, 1.0, 0.0)?; // Generate a stable random number with α=1.5, β=0.5, σ=1.0, μ=0.0
let stable_samples = stable::rands(1.5, 0.5, 1.0, 0.0, 1000)?; // Generate 1000 stable random numbers
// Special cases of α-stable distribution
let skew_sample = stable::skew_rand(1.5)?; // Generate a totally skewed stable random number with α=1.5
let skew_samples = stable::skew_rands(1.5, 1000)?; // Generate 1000 totally skewed stable random numbers
let sym_sample = stable::sym_standard_rand(1.5)?; // Generate a symmetric stable random number with α=1.5
let sym_samples = stable::sym_standard_rands(1.5, 1000)?; // Generate 1000 symmetric stable random numbers
// Object-oriented interface for stable distributions
let stable = stable::Stable::new(1.5, 0.5, 1.0, 0.0)?; // Create a stable distribution object
let samples = stable.samples(1000)?; // Generate 1000 samples
let std_stable = stable::StandardStable::new(1.5, 0.5)?; // Create a standard stable distribution object
let samples = std_stable.samples(1000)?; // Generate 1000 samples
Stochastic Process Simulation
use diffusionx::simulation::{prelude::*, Bm};
// Brownian motion simulation
let bm = Bm::default(); // Create standard Brownian motion object
let traj = bm.duration(1.0)?; // Create trajectory with duration 1.0
let (times, positions) = traj.simulate(0.01)?; // Simulate Brownian motion trajectory with time step 0.01
// Monte Carlo simulation of Brownian motion statistics
let mean = traj.raw_moment(1, 1000, 0.01)?; // First-order raw moment with 1000 particles
let msd = traj.central_moment(2, 1000, 0.01)?; // Second-order central moment with 1000 particles
// First passage time of Brownian motion
let max_duration = 1000; // if over this duration, the simulation will be terminated and return None
let fpt = bm.fpt(0.01, (-1.0, 1.0), max_duration)?;
// or
let fpt = FirstPassageTime::new(&bm, (-1.0, 1.0))?;
let fpt_result = fpt.simulate(max_duration, 0.01)?;
Extensibility
DiffusionX is designed with a trait-based system for high extensibility:
Core Traits
ContinuousProcess
: Base trait for continuous stochastic processesPointProcess
: Base trait for point processesMoment
: Trait for statistical moments calculation, including raw and central moments
Feature Extension
-
Adding New Continuous Process:
#[derive(Clone)] struct MyProcess { // Your parameters // Should be `Send + Sync` } impl ContinuousProcess for MyProcess { fn simulate(&self, duration: impl Into<f64>, time_step: f64) -> XResult<(Vec<f64>, Vec<f64>)> { // Implement your simulation logic todo!() } }
-
Automatic Feature Acquisition:
- Get
ContinuousTrajectoryTrait
functionality automatically by implementingContinuousProcess
trait - Get
Moment
trait functionality throughContinuousTrajectory
- Built-in support for moment statistics calculation
- Get
Example:
let myprocess = MyProcess::default();
let traj = myprocess.duration(10)?;
let (times, positions) = traj.simulate(0.01)?;
let mean = traj.raw_moment(1, 1000, 0.01)?;
let msd = traj.central_moment(2, 1000, 0.01)?;
- Parallel Computing Support:
- Automatic parallel computation support for moment calculations
- Default parallel strategy for statistical calculations
Progress
Random Number Generation
- Normal distribution
- Uniform distribution
- Exponential distribution
- Poisson distribution
- Alpha-stable distribution
Stochastic Processes
- Brownian motion
- Alpha-stable Lévy process
- Subordinator
- Inverse subordinator
- Poisson process
- Fractional Brownian motion
- Compound Poisson process
- Langevin equation
Benchmark
Test Results
Generating random array of length 10_000_000
Standard Normal | Uniform [0, 1] | Stable | |
---|---|---|---|
DiffusionX | 23.811 ms | 20.450 ms | 273.68 ms |
Julia | 28.748 ms | 9.748 ms | 713.955 ms |
NumPy / SciPy | 295 ms | 81.2 ms | 3.39 s |
Numba | - | - | 1.52 s |
Test Environment
Hardware Configuration
- Device Model: MacBook Pro 13-inch (2020)
- Processor: Intel Core i5-1038NG7 @ 2.0GHz (4 cores 8 threads)
- Memory: 16GB LPDDR4X 3733MHz
Software Environment
- Operating System: macOS Sequoia 15.3
- Rust: 1.85.0-beta.7
- Python: 3.12
- Julia: 1.11
- NumPy: 2.2.2
- SciPy: 1.15.1
License
This project is dual-licensed under:
You can choose to use either license.
Dependencies
~4MB
~74K SLoC