1 unstable release
0.1.0 | Oct 16, 2024 |
---|
#1097 in Cryptography
113 downloads per month
Used in 5 crates
2MB
22K
SLoC
aranya-fast-channels
implements Aranya Fast Channels (AFC).
Overview
APS provides a high-throughput, low latency encryption engine protected by Aranya's policy rules. Data encrypted with (or decrypted by) the engine is sent out of band (not though Aranya itself), making it suitable for encrypting network streams and other high-throughput data.
APS can be configured to use custom cryptography and random number generation.
Usage
APS uses the client-daemon model, with APS being the "client" and Aranya being the "daemon." However, this is merely a logical distinction; for instance, it's possible for both to be in the same process, just running as different threads (or tasks).
All APS operations are handled by the Client
, which
communicates with the daemon over AfcState
and
AranyaState
. By default, APS provides a state
implementation backed by shared memory.
Example
The following example demonstrates two Client
s encrypting
data for each other. In practice, the two clients are almost
always on different machines. The example also uses shared
memory for the state, but in practice anything supported by
Aranya can be used.
use aranya_fast_channels::{
AfcState,
AranyaState,
Channel,
ChannelId,
Client,
Directed,
Error,
Label,
NodeId,
crypto::Aes256Gcm,
shm::{Flag, Mode, Path, ReadState, WriteState},
};
use aranya_crypto::{
afc::{
BidiChannel,
BidiKeys,
BidiSecrets,
RawOpenKey,
RawSealKey,
},
Csprng,
EncryptionKey,
Engine,
Id,
IdentityKey,
Random,
Rng,
rust::HkdfSha256,
default::{DefaultCipherSuite, DefaultEngine},
};
type E = DefaultEngine;
type CS = DefaultCipherSuite;
// The maximum number of channels supported by the shared
// memory.
//
// You can use any value, this is just an example.
const MAX_CHANS: usize = 42;
let aranya_client_a: WriteState<CS, Rng> = {
let path = Path::from_bytes(b"/afc_doc_client_a\x00")
.map_err(|err| Error::SharedMem(err.into()))?;
# aranya_fast_channels::shm::unlink(path);
WriteState::open(
path,
Flag::Create,
Mode::ReadWrite,
MAX_CHANS,
Rng,
)
.map_err(Error::SharedMem)?
};
let user1_node_id = NodeId::new(1);
let aranya_client_b: WriteState<CS, Rng> = {
let path = Path::from_bytes(b"/afc_doc_client_b\x00")
.map_err(|err| Error::SharedMem(err.into()))?;
# aranya_fast_channels::shm::unlink(path);
WriteState::open(
path,
Flag::Create,
Mode::ReadWrite,
MAX_CHANS,
Rng,
)
.map_err(Error::SharedMem)?
};
let user2_node_id = NodeId::new(2);
let (mut eng, _) = E::from_entropy(Rng);
let user1_id = IdentityKey::<CS>::new(&mut eng).id()?;
let user1_enc_sk = EncryptionKey::<CS>::new(&mut eng);
let user2_id = IdentityKey::<CS>::new(&mut eng).id()?;
let user2_enc_sk = EncryptionKey::<CS>::new(&mut eng);
// The label used for encryption and decryption.
//
// The value (12) should come from the label definition in
// the Aranya policy file.
const TOP_SECRET: Label = Label::new(12);
let ch1 = BidiChannel {
parent_cmd_id: Id::random(&mut eng),
our_sk: &user1_enc_sk,
our_id: user1_id,
their_pk: &user2_enc_sk.public()?,
their_id: user2_id,
label: TOP_SECRET.to_u32(),
};
let BidiSecrets { author, peer } =
BidiSecrets::new(&mut eng, &ch1)?;
// Inform user1 about user2.
let (seal, open) = BidiKeys::from_author_secret(&ch1, author)?
.into_raw_keys();
aranya_client_a.add(
ChannelId::new(user2_node_id, TOP_SECRET),
Directed::Bidirectional { seal, open },
);
let ch2 = BidiChannel {
parent_cmd_id: ch1.parent_cmd_id,
our_sk: &user2_enc_sk,
our_id: user2_id,
their_pk: &user1_enc_sk.public()?,
their_id: user1_id,
label: TOP_SECRET.to_u32(),
};
// Inform user2 about user1.
let (seal, open) = BidiKeys::from_peer_encap(&ch2, peer)?
.into_raw_keys();
aranya_client_b.add(
ChannelId::new(user1_node_id, TOP_SECRET),
Directed::Bidirectional { seal, open },
);
let mut afc_client_a = {
let path = Path::from_bytes(b"/afc_doc_client_a\x00")
.map_err(|err| Error::SharedMem(err.into()))?;
let state = ReadState::open(
path,
Flag::OpenOnly,
Mode::ReadWrite,
MAX_CHANS,
)
.map_err(Error::SharedMem)?;
Client::<ReadState<CS>>::new(state)
};
let mut afc_client_b = {
let path = Path::from_bytes(b"/afc_doc_client_b\x00")
.map_err(|err| Error::SharedMem(err.into()))?;
let state = ReadState::open(
path,
Flag::OpenOnly,
Mode::ReadWrite,
MAX_CHANS,
)
.map_err(Error::SharedMem)?;
Client::<ReadState<CS>>::new(state)
};
const GOLDEN: &str = "hello from APS!";
// Have user1 encrypt data for user2.
let ciphertext = {
let id = ChannelId::new(user2_node_id, TOP_SECRET);
// Encryption has a little overhead, so make sure the
// ouput buffer is large enough.
let mut dst = vec![0u8; GOLDEN.len() + Client::<ReadState<CS>>::OVERHEAD];
afc_client_a.seal(id, &mut dst[..], GOLDEN.as_bytes())?;
dst
};
// Here is where you'd send ciphertext over the network, or
// whatever makes sense for your application.
// Have user2 decrypt the data from user1.
let (label, plaintext) = {
let mut dst = vec![0u8; ciphertext.len() - Client::<ReadState<CS>>::OVERHEAD];
let label = afc_client_b.open(user1_node_id, &mut dst[..], &ciphertext[..])?;
(label, dst)
};
// At this point we can now make a decision on what to do
// with plaintext based on the label. We know it came from
// `user1_node_id` and we know it has the label `TOP_SECRET`.
// Both of those facts (`user1_node_id` and `TOP_SECRET`)
// have been cryptographically verified, so we can make
// decisions based on them. For example, we could forward the
// plaintext data on to another system that ingests "top
// secret" data.
assert_eq!(label, TOP_SECRET);
assert_eq!(plaintext, GOLDEN.as_bytes());
Dependencies
~9–22MB
~287K SLoC