1 unstable release
Uses new Rust 2024
new 0.1.0 | Apr 1, 2025 |
---|
#1397 in Development tools
42KB
632 lines
anda_db_tfs
: A High-Performance Full-Text Search Library in Rust
anda_db_tfs
is a full-text search library implementing the BM25 ranking algorithm in Rust. BM25 (Best Matching 25) is a ranking function used by search engines to estimate the relevance of documents to a given search query. It's an extension of the TF-IDF model.
Features
- High Performance: Optimized for speed with parallel processing using Rayon.
- Customizable Tokenization: Support for various tokenizers including Chinese text via jieba.
- BM25 Ranking: Industry-standard relevance scoring algorithm.
- Document Management: Add, remove, and search documents with ease.
- Serialization: Save and load indices in CBOR format with optional compression.
- Thread-Safe: Designed for concurrent access with read-write locks.
- Memory Efficient: Optimized data structures for reduced memory footprint.
Installation
Add this to your Cargo.toml
:
[dependencies]
anda_db_tfs = "0.1.0"
For full features including tantivy tokenizers and jieba support:
[dependencies]
anda_db_tfs = { version = "0.1.0", features = ["full"] }
Quick Start
use anda_db_tfs::{BM25Index, SimpleTokenizer};
// Create a new index with a simple tokenizer
let index = BM25Index::new(SimpleTokenizer::default());
// Add documents to the index
index.add_document(1, "The quick brown fox jumps over the lazy dog").unwrap();
index.add_document(2, "A fast brown fox runs past the lazy dog").unwrap();
index.add_document(3, "The lazy dog sleeps all day").unwrap();
// Search for documents containing "fox"
let results = index.search("fox", 10);
for (doc_id, score) in results {
println!("Document {}: score {}", doc_id, score);
}
// Remove a document
index.remove_document(3, "The lazy dog sleeps all day");
// Save the index to a file
let file = std::fs::File::create("index.cbor").unwrap();
index.save(file).unwrap();
// Load the index from a file
let file = std::fs::File::open("index.cbor").unwrap();
let loaded_index = BM25Index::load(file, SimpleTokenizer::default()).unwrap();
Chinese Text Support
With the tantivy-jieba
feature enabled, you can use the jieba tokenizer for Chinese text:
use anda_db_tfs::{BM25Index, jieba_tokenizer};
// Create an index with jieba tokenizer
let index = BM25Index::new(jieba_tokenizer());
// Add documents with Chinese text
index.add_document(1, "Rust 是一种系统编程语言").unwrap();
index.add_document(2, "Rust 快速且内存高效,安全、并发、实用").unwrap();
// Search for documents
let results = index.search("安全", 10);
Advanced Usage
Custom Tokenizer and BM25 Parameters
use anda_db_tfs::{BM25Index, BM25Params};
use tantivy::tokenizer::{LowerCaser, RemoveLongFilter, SimpleTokenizer, Stemmer};
// Create an index with custom BM25 parameters
let params = BM25Params { k1: 1.5, b: 0.75 };
let tokenizer = TokenizerChain::builder(SimpleTokenizer::default())
.filter(RemoveLongFilter::limit(32))
.filter(LowerCaser)
.filter(Stemmer::default())
.build();
let index = BM25Index::new(tokenizer).with_params(params);
Batch Document Processing
use anda_db_tfs::{BM25Index, default_tokenizer};
let index = BM25Index::new(default_tokenizer());
// Prepare multiple documents
let docs = vec![
(1, "Document one content".to_string()),
(2, "Document two content".to_string()),
(3, "Document three content".to_string()),
];
// Add documents in batch
let results = index.add_documents(docs);
API Documentation
BM25Index
The main struct for creating and managing a search index.
// Create a new index
pub fn new(tokenizer: T) -> Self
// Set custom BM25 parameters
pub fn with_params(self, params: BM25Params) -> Self
// Add a document to the index
pub fn add_document(&self, id: u64, text: &str) -> Result<(), BM25Error>
// Add multiple documents to the index
pub fn add_documents(&self, docs: Vec<(u64, String)>) -> Vec<Result<(), BM25Error>>
// Remove a document from the index
pub fn remove_document(&self, id: u64, text: &str) -> bool
// Search the index
pub fn search(&self, query: &str, top_k: usize) -> Vec<(u64, f32)>
// Get the number of documents in the index
pub fn len(&self) -> usize
// Check if the index is empty
pub fn is_empty(&self) -> bool
// Save the index to a writer
pub fn save<W: Write>(&self, w: W) -> Result<(), BM25Error>
// Load the index from a reader
pub fn load<R: Read>(r: R, tokenizer: T) -> Result<Self, BM25Error>
BM25Params
Parameters for the BM25 ranking algorithm.
pub struct BM25Params {
// Controls term frequency saturation
pub k1: f32,
// Controls document length normalization
pub b: f32,
}
Default values: k1 = 1.2, b = 0.75
Error Handling
The library uses a custom error type BM25Error
for various error conditions:
BM25Error::Io
: IO errors during read/write operations.BM25Error::Cbor
: Serialization/deserialization errors.BM25Error::AlreadyExists
: When trying to add a document with an ID that already exists.BM25Error::TokenizeFailed
: When tokenization produces no tokens for a document.
Performance Considerations
- For large documents, the library automatically uses parallel processing for tokenization.
- The search function uses parallel processing for query terms.
- For best performance with large indices, consider using SSD storage for serialized indices.
- Memory usage scales with the number of documents and unique terms.
License
Copyright © 2025 LDC Labs.
ldclabs/anda-db
is licensed under the MIT License. See LICENSE for the full license text.
Dependencies
~5–17MB
~198K SLoC